Способ глазного протезирования с использованием технологии 3d моделирования

Изобретение относится к области медицины, а именно к офтальмологии, и может быть использовано для глазного протезирования с использованием технологии 3D моделирования. Проводят компьютерную томографию (КТ) опорно-двигательной культи пациента. При этом сканирование проводят в две фазы, а именно до и после введения контрастного препарата с одинаковыми параметрами, включающими спиральный режим сканирования, напряжение на рентгеновской трубке не ниже 120 кВ, ток не менее 100 мА, толщину сканирования не более 2 мм и/или толщину реконструируемого среза не более 1 мм. При этом положение пациента на спине, ось вращения гентри параллельна продольной оси тела пациента, зона сканирования включает область головы от уровня надбровных дуг до подглазничного края орбит. После первой фазы производят введение в верхний и нижний отделы конъюнктивального мешка 0,2-0,5 мл раствора низкоосмоляльного йодосодержащего контрастного препарата, который подготавливают путем смешивания йодосодержащего контрастного вещества, содержащего 300-400 мг йода на мл, с изотоническим раствором в пропорции не менее 1:20. Затем производят вторую фазу сканирования. После чего создают персонализированную трехмерную виртуальную модель глазного протеза. Способ позволяет осуществить глазное протезирование с учетом индивидуальных особенностей опорно-двигательной культи пациента за счет заявленного протокола проведения КТ. 2 ил.

 

Изобретение относится к области медицины, а именно к офтальмологии, и может применяться для индивидуального глазного протезирования с целью косметической реабилитации пациентов в исходе крайне тяжелых травм глазного яблока, приводящих к его энуклеации или эвисцерации, а также у пациентов после удаления глаза с формированием опорно-двигательной культи глазного яблока, выполненного по поводу злокачественных новообразований глаза и терминальной болящей глаукомы. Данный способ позволяет усовершенствовать технологию глазного протезирования с учетом индивидуальных особенностей опорно-двигательной культи пациента, тем самым получить более высокие показатели косметической реабилитации и улучшить социально-психологическую адаптацию данной категории больных.

Известен способ определения изготовления пустотелых пластмассовых глазных протезов, включающий получение двух половинок индивидуального глазного протеза, создание в них из внутренних полостей путем удаления пластмассы и последующее соединение пустотелых половинок (RU 2228846, B29D 11/02, A61F 2/14, опубл. 20.05.2004).

Недостатком данного способа является невозможность оценки индивидуальных особенностей опорно-двигательной культи пациента при изготовлении глазного протеза, в связи с недостаточной точностью предлагаемого способа.

В основу изобретения положена задача создания более точного способа глазного протезирования с целью косметической реабилитации пациентов с анофтальмом.

Решение поставленной задачи обеспечивается тем, что в способе глазного протезирования с использованием технологии 3D моделирования производят компьютерную томографию опорно-двигательной культи пациента, при этом сканирование проводят в две фазы, а именно до и после введения контрастного препарата с одинаковыми параметрами, включающими спиральный режим сканирования, напряжение на рентгеновской трубке не ниже 120 кВ, ток не менее 100 мА, толщину сканирования не более 2 мм и/или толщину реконструируемого среза не более 1 мм, для чего используют положение пациента на спине, ось вращения гентри параллельна продольной оси тела пациента, зона сканирования включает область головы от уровня надбровных дуг до подглазничного края орбит; после первой фазы производят введение в верхний и нижний отделы конъюнктивального мешка 0,2-0,5 мл раствора низкоосмоляльного йодосодержащего контрастного препарата, который подготавливают путем смешивания йодосодержащего контрастного вещества, содержащего 300-400 мг йода на мл, с изотоническим раствором в пропорции не менее 1:20, затем производят вторую фазу сканирования; после чего создают персонализированную трехмерную виртуальную модель глазного протеза.

Вторая фаза сканирования (после введения в верхний и нижний отделы конъюнктивального мешка 0,2-0,5 мл раствора низкоосмоляльного йодосодержащего контрастного препарата) позволяет лучше дифференцировать мягкотканные структуры конъюнктивальной полости, что позволяет учесть индивидуальную морфологию опорно-двигательной культи пациента и существенно повысить точность моделирования персонализированного глазного протеза с учетом индивидуальных особенностей опорно-двигательной культи.

Изобретение поясняется фиг. 1, на которой показаны данные компьютерной томографии опорно-двигательной культи пациента, и фиг. 2, на которой приведены персонализированные трехмерные виртуальные модели глазного протеза.

Изобретение осуществляется следующим образом. Производят компьютерную томографию опорно-двигательной культи пациента (данные КТ показаны на фиг. 1). Сканирование проводится в две фазы (до и после введения контрастного препарата) с одинаковыми параметрами, включающими спиральный режим сканирования, напряжение на рентгеновской трубке не ниже 120 кВ, ток не менее 100 мА, толщину сканирования не более 2 мм и/или толщину реконструируемого среза не более 1 мм. Положение пациента на спине, ось вращения гентри параллельна продольной оси тела пациента, зона сканирования должна включать область головы от уровня надбровных дуг до подглазничного края орбит. После первой фазы производится введение в верхний и нижний отделы конъюнктивального мешка 0,2-0,5 мл раствора низкоосмоляльного йодосодержащего контрастного препарата. Раствор подготавливается путем смешивания йодосодержащего контрастного вещества, содержащего 300-400 мг йода на мл, с изотоническим раствором в пропорции не менее 1:20. Непосредственно после введения контрастного вещества производится вторая фаза сканирования.

На основании данных сканирования, с помощью специализированного программного обеспечения, установленного на компьютер, создается персонализированная трехмерная виртуальная модель глазного протеза (фиг. 2) путем преобразования совокупности вокселей, соответствующих анатомическим границам конъюнктивального мешка, в замкнутую полигональную поверхность. Данная модель в дальнейшем преобразуется в набор управляющих команд для устройства с числовым программным управлением (включая, но не ограничиваясь, 3D-принтерами, фрезерными станками и т.д.). Соответствующее устройство производит, согласно управляющим командам, материальную модель глазного протеза. Полученный глазной протез проходит, при необходимости, финальную постобработку, которая может включать механическое, химическое, термическое или иное воздействие для обеспечения гладкости поверхности, контактирующей с тканями пациента.

Способ глазного протезирования с использованием технологии 3D моделирования, отличающийся тем, что производят компьютерную томографию опорно-двигательной культи пациента, при этом сканирование проводят в две фазы, а именно до и после введения контрастного препарата с одинаковыми параметрами, включающими спиральный режим сканирования, напряжение на рентгеновской трубке не ниже 120 кВ, ток не менее 100 мА, толщину сканирования не более 2 мм и/или толщину реконструируемого среза не более 1 мм, для чего используют положение пациента на спине, ось вращения гентри параллельна продольной оси тела пациента, зона сканирования включает область головы от уровня надбровных дуг до подглазничного края орбит; после первой фазы производят введение в верхний и нижний отделы конъюнктивального мешка 0,2-0,5 мл раствора низкоосмоляльного йодосодержащего контрастного препарата, который подготавливают путем смешивания йодосодержащего контрастного вещества, содержащего 300-400 мг йода на мл, с изотоническим раствором в пропорции не менее 1:20, затем производят вторую фазу сканирования; затем создают персонализированную трехмерную виртуальную модель глазного протеза.



 

Похожие патенты:

Изобретение относится к медицине, а именно к устройствам, используемым в офтальмохирургии. Устройство для имплантации в капсулу хрусталика выполнено в виде внутрикапсульного сегмента, представляющего собой сегмент кольца протяженностью от 90° до 180°, из пластика, имеющий на концах кольца с отверстиями, а в средней части - элемент для фиксации к радужной оболочке глаза, который включает две закрепленные на сегменте одной из своих сторон идентичные петли, вершины которых направлены к центру кольца.

Изобретение относится к медицине, а именно к устройствам, используемым в офтальмохирургии. Устройство для имплантации в капсулу хрусталика выполнено в виде внутрикапсульного сегмента, представляющего собой сегмент кольца протяженностью от 90° до 180°, из пластика, имеющий на концах кольца с отверстиями, а в средней части - элемент для фиксации к радужной оболочке глаза, который включает две закрепленные на сегменте одной из своих сторон идентичные петли, вершины которых направлены к центру кольца.

Изобретение относится к медицине, а именно к офтальмологии. Роговичный имплантат для проведения интраламеллярной полимерной кератопластики выполнен из оптически прозрачного биосовместимого материала.

Изобретение относится к медицине, а именно к офтальмологии. Роговичный имплантат для проведения интраламеллярной полимерной кератопластики выполнен из оптически прозрачного биосовместимого материала.

Группа изобретений относится к медицине, а именно к офтальмологическому имплантату, а именно к имплантату радужной оболочки, а также к способу создания пигментной композиции в составе офтальмологического имплантата данного типа. Офтальмологический имплантат содержит основную структуру с центральным отверстием, первой стороной и второй стороной, противоположной первой стороне, и пигментные композиции, расположенные в основной структуре.

Изобретение относится к области медицины, а именно к офтальмохирургии. Искусственная иридохрусталиковая диафрагма (ИХД) для бесшовной транссклеральной фиксации состоит из круглой оптической части в виде положительной линзы и окрашенной гаптической части (ГЧ).

Изобретение относится к области медицины, а именно к офтальмохирургии. Для закрытия дефекта радужной оболочки глаза после удаления опухоли иридоцилиарной зоны сначала имплантируют иридохрусталиковую диафрагму (ИХД) с не более чем тремя гаптическими элементами, избегая контакта гаптических элементов ИХД с зоной, предшествовавшей операции по удалению опухоли.

Изобретение относится к офтальмологии и предназначено для подготовки трансплантата для сквозной кератопластики. Способ подготовки материала для сквозной кератопластики включает его модификацию с помощью кросслинкинга роговичного коллагена по стандартному Дрездонскому протоколу, отличающийся тем, что в качестве материала используют имплантат для восстановления дефектов тканей «BIOPLAST» для кератопластики, лиофилизированный, который сначала подвергают гидратации в течение не менее 3 часов, а затем - кросслинкингу роговичного коллагена.
Изобретение относится к области медицины, а именно к офтальмологии. Для докоррекции миопической аметропии при помощи фоторефракционной кератэктомии после имплантации кольца MyoRing в интрастромальный карман, сформированный с применением фемтосекундного лазера, через 12 месяцев после имплантации кольца MyoRing в интрастромальный карман, сформированный на глубине 80-87% от минимальной толщины роговицы, проводят фоторефракционную кератэктомию со следующими параметрами: диаметр оптической зоны роговицы равен наружному диаметру имплантированного кольца MyoRing, диаметр зоны абляции - на 2,0-3,0 мм больше диаметра зрачка в мезопических условиях, остаточная минимальная толщина роговицы над кольцом MyoRing после абляции - 70-200 мкм, центровка зоны абляции по центру кольца MyoRing.
Изобретение относится к области медицины, а именно к офтальмологии. Для докоррекции миопической аметропии при помощи фоторефракционной кератэктомии после имплантации кольца MyoRing в интрастромальный карман, сформированный с применением фемтосекундного лазера, через 12 месяцев после имплантации кольца MyoRing в интрастромальный карман, сформированный на глубине 80-87% от минимальной толщины роговицы, проводят фоторефракционную кератэктомию со следующими параметрами: диаметр оптической зоны роговицы равен наружному диаметру имплантированного кольца MyoRing, диаметр зоны абляции - на 2,0-3,0 мм больше диаметра зрачка в мезопических условиях, остаточная минимальная толщина роговицы над кольцом MyoRing после абляции - 70-200 мкм, центровка зоны абляции по центру кольца MyoRing.

Заявленная группа изобретений относится к области медицины, а именно к способу позиционирования отображаемой области для формирования изображений компьютерной томографии и устройству формирования изображений компьютерной томографии. В способе применяется устройство формирования изображений компьютерной томографии, включающее средство формирования рентгеновских изображений, система управления устройством формирования изображений компьютерной томографии и средство отображения информации изображений, которое функционально соединено с устройством формирования изображений компьютерной томографии.
Наверх