Способ проведения тепловакуумных испытаний при наземной проверке космических аппаратов на работоспособность

Изобретение относится к области испытательной техники, в частности к наземной проверке космических аппаратов (КА) на работоспособность. Способ проведения тепловакуумных испытаний при наземной проверке КА на работоспособность включает помещение КА в вакуумную камеру, вакуумирование камеры, создание на поверхности КА рабочей температуры, включение аппаратуры КА и оценивание работоспособности КА. Перед включением аппаратуры КА с высокими требованиями к остаточному давлению в вакуумной камере дополнительно измеряют давление в непосредственной близости от указанной аппаратуры. При достижении допустимого значения давления в непосредственной близости от указанной аппаратуры ее включают и ведут оценку работоспособности КА при постоянном контроле за давлением в непосредственной близости от указанной аппаратуры. При повышении указанного давления выше допустимого значения аппаратуру выключают, продолжают вакуумирование камеры до достижения допустимого значения давления, включают аппаратуру и возобновляют оценку работоспособности аппаратуры КА. Достигается точность и достоверность результатов испытаний КА.

 

Изобретение относится к области испытательной техники, в частности, к наземной проверке космических аппаратов (КА) на работоспособность в условиях, приближенных к эксплуатации КА в космическом пространстве, и может найти применение в тех областях техники, где предъявляются повышенные требования к условиям проведения экспериментальных исследований при оценке работоспособности аппаратуры КА.

Известен способ испытаний КА на работоспособность, заключающийся в том, что устанавливают КА в вакуумную камеру, вакуумируют вакуумную камеру с помощью системы вакуумирования до остаточного давления и проверяют КА на работоспособность (Патент RU №2302983 С1, Бюл. №20, 20.07.2007, МПК B64G 7/00 (2006.01)).

Наиболее близким по технической сущности к предлагаемому изобретению является способ проведения тепловакуумных испытаний при наземной проверке космических аппаратов на работоспособность, заключающийся в том, что помещают КА в вакуумную камеру, вакуумируют вакуумную камеру с помощью вакуумной откачной системы до остаточного давления, создают на поверхности космического аппарата рабочую температуру и проверяют КА на работоспособность (Андрейчук О.Б., Малахов Н.Н. Тепловые испытания космических аппаратов. - М.: Машиностроение, 1982 г., стр. 105). Этот способ принят за прототип.

Недостатком аналога и прототипа является то, что в этих способах при проверке работоспособности КА в вакуумной камере недостаточно точно измеряется остаточное давление около работающей аппаратуры КА, критичной к вакууму, с точки зрения возникновения высоковольтного электрического пробоя. Особенно важно учитывать тот фактор, что данная аппаратура чаще всего находится внутри КА под обшивкой экранно-вакуумной теплоизоляции (ЭВТИ) или внутри негерметичного приборного контейнера, где давление окружающей среды, как правило, на порядок выше, чем в самой вакуумной камере, за счет продуктов газовыделения из неметаллических конструкционных материалов, бортовой кабельной сети и ЭВТИ.

Задачей изобретения является обеспечение измерения реального давления около работающей аппаратуры в процессе проведения испытаний КА.

Техническим результатом изобретения являются повышение точности и достоверности результатов испытаний КА при его проверке на работоспособность при имитации натурных условий эксплуатации и исключение рисков выхода из строя при эксплуатации работающей аппаратуры КА, критичной к ухудшению вакуума, из-за возникновения высоковольтного электрического пробоя.

Технический результат достигается за счет того, что в способе проведения тепловакуумных испытаний при наземной проверке космических аппаратов на работоспособность, заключающемся в том, что помещают космический аппарат в вакуумную камеру, вакуумируют камеру до остаточного давления, создают на поверхности космического аппарата рабочую температуру, включают аппаратуру космического аппарата и оценивают работоспособность космического аппарата, при этом перед включением аппаратуры космического аппарата с высокими требованиями к остаточному давлению в вакуумной камере дополнительно измеряют давление в непосредственной близости от указанной аппаратуры, при достижении допустимого значения давления в непосредственной близости от указанной аппаратуры ее включают и ведут оценку работоспособности космического аппарата при постоянном контроле за давлением в непосредственной близости от указанной аппаратуры, при повышении указанного давления выше допустимого значения аппаратуру выключают, продолжают вакуумирование камеры до достижения допустимого значения давления, включают аппаратуру и возобновляют оценку работоспособности аппаратуры космического аппарата.

По сравнению с прототипом заявленное техническое решение позволяет повысить точность и достоверность результатов испытаний КА при его проверке на работоспособность при имитации натурных условий эксплуатации и исключить риски выхода из строя при эксплуатации работающей аппаратуры КА, критичной к ухудшению вакуума, из-за возникновения высоковольтного электрического пробоя.

Предлагаемый способ реализуется следующим образом:

- помещают КА в вакуумную камеру, например, в ВК 600/300;

- вакуумируют вакуумную камеру с помощью вакуумной откачной системы (вакуумных насосов, например, механических Oerlikon Leybold RUTA WH7000/DV1200/G, турбомолекулярных Edwards STP-iXA4506C) до остаточного давления, например, 2⋅10-5 мм рт. ст., которое измеряют, например, вакуумметром Televac СС-10 (значение давления указывается в рабочей документации на испытания);

- создают на поверхности космического аппарата рабочую температуру (например, с помощью криоэкранов вакуумной камеры, захолаживаемых жидким азотом и инфракрасных керамических нагревателей FFE1000);

- перед включением аппаратуры космического аппарата с высокими требованиями к остаточному давлению в вакуумной камере дополнительно измеряют давление, например, вакуумным датчиком Televac 7е, расположенным в вакуумной камере, в непосредственной близости от указанной аппаратуры;

- при достижении допустимого уровня давления включают указанную аппаратуру и ведут оценку работоспособности космического аппарата и постоянный контроль за давлением в непосредственной близости от указанной аппаратуры;

- при повышении указанного давления выше допустимого значения аппаратуру выключают и продолжают вакуумирование камеры до достижения допустимого уровня давления;

- снова включают аппаратуру и ведут оценку работоспособности космического аппарата в соответствии с программой полета до завершения оценки.

Проведенные эксперименты показали, что при проведении тепловакуумных испытаний экспериментального макета КА в вакуумной камере остаточное давление в объеме вакуумной камеры составляло 2⋅10-5 мм рт. ст., а давление, измеренное в непосредственной близости от проверяемой аппаратуры, которая находилась внутри макета КА под экранно-вакуумной изоляцией составило 4⋅10-4 мм рт. ст. Аппаратура же могла быть включена при указанном в конструкторской документации допустимом уровне давления не выше, чем 8⋅10-5 мм рт. ст. В способе прототипе давление в непосредственной близости от проверяемой аппаратуры не измерялось и это могло привести к выходу из строя дорогостоящей аппаратуры при ее включении. Поэтому потребовалось провести дополнительное вакуумирование камеры, чтобы удалить продукты газовыделения из неметаллических конструкционных материалов, бортовой кабельной сети и ЭВТИ макета КА и достичь, таким образом, допустимого уровня давления в непосредственной близости от проверяемой аппаратуры.

Предлагаемое техническое решение позволит повысить точность и достоверность результатов испытаний КА при его проверке на работоспособность при имитации натурных условий эксплуатации и исключить риски выхода из строя при эксплуатации работающей аппаратуры КА, критичной к ухудшению вакуума, из-за возникновения высоковольтного электрического пробоя. Способ достаточно прост в эксплуатации и не требует разработки нового оборудования.

Способ проведения тепловакуумных испытаний при наземной проверке космических аппаратов на работоспособность, заключающийся в том, что помещают космический аппарат в вакуумную камеру, вакуумируют камеру до остаточного давления, создают на поверхности космического аппарата рабочую температуру, включают аппаратуру космического аппарата и оценивают работоспособность космического аппарата, отличающийся тем, что перед включением аппаратуры космического аппарата с высокими требованиями к остаточному давлению в вакуумной камере дополнительно измеряют давление в непосредственной близости от указанной аппаратуры, при достижении допустимого значения давления в непосредственной близости от указанной аппаратуры ее включают и ведут оценку работоспособности космического аппарата при постоянном контроле за давлением в непосредственной близости от указанной аппаратуры, при повышении указанного давления выше допустимого значения аппаратуру выключают, продолжают вакуумирование камеры до достижения допустимого значения давления, включают аппаратуру и возобновляют оценку работоспособности аппаратуры космического аппарата.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике, а именно к устройствам, используемым на этапе наземных тепловакуумных испытаний спутников стандарта CubeSat. Стенд для тепловакуумных испытаний спутников стандарта CubeSat форматов от 1U до 12U содержит вакуумную камеру, имитатор солнечного излучения и опорно-поворотное устройство.
Изобретение относится к области испытательной техники, в частности к наземным тепловакуумным испытаниям космических объектов. Способ захолаживания системы космического объекта, работающей в вакууме, при моделировании условий штатной эксплуатации заключается в том, что устанавливают испытываемую систему в вакуумную камеру, вакуумируют вакуумную камеру и захолаживают испытываемую систему.
Изобретение относится к области испытательной техники, в частности, к наземной проверке космических аппаратов (КА). Способ имитации давления в вакуумной камере при наземной проверке КА на работоспособность, при котором помещают КА в вакуумную камеру, вакуумируют её и проверяют КА на работоспособность.

Изобретение относится к вакуумной технологии очистки поверхности и нанесения упрочняющих покрытий на изделия из кварцевого стекла, преимущественно марки КВ, указанная технология может быть использована в космических аппаратах в условиях космического пространства. Предложен способ восстановления прозрачного упрочняющего неорганического покрытия из кварцевого стекла марки КВ на поверхности изделия из кварцевого стекла, используемого в космическом аппарате, осуществляемый в имитируемых условиях космического пространства.

Изобретение относится к испытаниям элементов космических аппаратов (КА) с имитацией условий космического пространства. Стенд содержит вакуумную камеру (ВК) с системой ее вакуумирования (СВ), криогенный экран, расположенный по внутреннему контуру ВК, имитатор внешних тепловых потоков, систему управления процессом испытаний.

Изобретение относится к ракетно-космической технике, а именно к устройствам, применяемым при наземном тестировании. Универсальный имитатор транспортно-пускового контейнера состоит из корпуса с основанием в виде плиты, верхней горизонтальной крышки, вертикальных боковых стенок с окнами и с угловыми направляющими, толкателя и его пружин.

Изобретение относится к стендовым испытаниям электрических ракетных двигателей. Система отвода теплоты при испытаниях электрических ракетных двигателей в вакуумных камерах, имитирующих космическую среду, включает теплоотводящий охлаждаемый экран и чиллер.

Изобретение относится к области машиностроения, а более конкретно к виброакустическим испытаниям. Способ испытаний изделий космической техники на виброакустическое воздействие заключается в том, что в пространстве между испытуемым объектом и расположенным вокруг него излучателями звукового сигнала создается акустическое поле.

Изобретение относится к испытательной технике, а более конкретно к способу и устройству имитации невесомости трансформируемых систем космических аппаратов. Способ имитации невесомости трансформируемых систем космических аппаратов включает прикрепление привязного аэростата к трансформируемой системе.

Изобретение относится к области общего машиностроения и может быть использовано для резкого (мгновенного) создания разреженной среды внутри камеры, имитирующей высотные факторы полета, путем перепуска среды из камеры в смежный сосуд или емкость с заранее созданным заданным разрежением среды. Устройство содержит корпус 1, состоящий из соединенных между собой верхнего 2 и нижнего 3 колец Г-образного поперечного сечения, и снабжен прижимным кольцом 4.

Устройство и способ для измерения плотности падающих тепловых потоков при наземных тепловакуумных испытаниях космических аппаратов относятся к космической технике, а именно к контролю теплового режима космического аппарата под воздействием окружающей среды, имитирующей космическое пространство. Устройство для измерения плотности падающих тепловых потоков при наземных тепловакуумных испытаниях космических аппаратов выполнено из двух рядом расположенных в одной плоскости узлов, в состав каждого из которых входят две плоско параллельные пластины приемники лучистой энергии (ПЛЭ) с наклеенными датчиками температуры на наружных поверхностях. При этом на пластинах нанесены селективные терморегулирующие покрытия с фиксированными радиационными коэффициентами поглощения-излучения солнечного и инфракрасного спектров, а сами пластины изготовлены из материалов с высоким значением коэффициентов температуропроводности. Способ измерения плотности падающих тепловых потоков при наземных тепловакуумных испытаниях космических аппаратов основанный на измерении четырех значений температуры на попарно расположенных в одной плоскости панелей ПЛЭ отличаетсяся тем, что в процессе дискретного по времени опроса измеряемых температурных значений панелей ПЛЭ одновременно рассчитываются значения их температурных градиентов, с учетом которых, по алгоритмам специального программного обеспечения, определяют текущие значения полусферических спектральных плотностей падающих потоков солнечного и инфракрасного излучения с противоположных сторон устройства при минимальной собственной тепловой инерционности устройства. Технический результат - повышение точности моделирования штатных условий эксплуатации КА в части имитации динамических падающих лучистых потоков, а дифференцированная оценка и контроль долевого влияния спектрального состава падающих лучистых потоков солнечного и инфракрасного излучения на тепловой режим объекта испытаний. Использование предлагаемого изобретения сокращает сроки и повышает качество наземной тепловакуумной отработки КА и, таким образом, повышает надежность эксплуатации космических аппаратов. 2 н.п. ф-лы, 1 табл., 7 ил.
Наверх