1,3,3-триметил-5-метокси-6´-бром-8´-[(е)-2-(1´´,3´´,3´´-триметил-5-метокси-3н-индолий-2´´-ил)винил]-спиро[индолин-2,2´-2н-хромен] йодид, обладающий фотохромными свойствами

Изобретение относится к области органической химии, а именно к новому производному в ряду индолиновых спиропиранов. Представлен 1,3,3-триметил-5-метокси-6'-бром-8'-[(Е)-2-(1'',3'',3''-триметил-5-метокси-3Н-индолий-2''-ил)винил]-спиро[индолин-2,2'-2Н-хромен] йодид формулы 1. Изобретение обеспечивает увеличение времени жизни открытой формы спиропирана в ряду 1,3,3-триметилспиро-индолино-2,2'-[2Н]хроменов с заместителями в бензопирановом фрагменте и может быть инкорпорировано в анионную магнитную подрешетку в качестве фотохимического молекулярного переключателя. 1 з.п. ф-лы, 3 ил., 1 табл., 1 пр.

 

Изобретение относится к новому производному в ряду индолиновых спиропиранов, а именно к неописанному ранее 1,3,3-триметил-5-метокси-6'-бром-8'-[(Е)-2-(1'',3'',3''-триметил-5-метокси-3Н-индолий-2''-ил)винил]-спиро[индолин-2,2'-2Н-хромен] йодиду формулы 1:

Соединение обладает фотохромными свойствами и может быть использовано при создании органических магнитов с управляемыми характеристиками в качестве катионной функциональной составляющей со сложными металло-оксалатными анионами, а также в системах записи-чтения информации.

Спиропираны являются одним из наиболее перспективных классов органических фотохромных соединений. Это связано с высокими квантовыми выходами фотоизомеризации, сравнительной легкостью синтеза и модификации структуры молекулы спиропиранов, позволяющей осуществлять тонкую настройку фотодинамических характеристик, а также существенным различием в физико-химических, прежде всего спектральных свойствах исходной и фотоиндуцированной формы. Фотохромные превращения спиропиранов представляют собой большой интерес, так как материалы на их основе могут быть использованы для записи и хранения информации. Фотохромные превращения нейтральных спиропиранов, связанны с разрывом связи Сспиро-О и последующей изомеризацией молекулы, что требуют достаточного свободного пространства и поэтому в кристаллах затруднены в силу плотной упаковки молекул в решётке. Как правило, нейтральные спиропираны в монокристаллах и кристаллических порошках не проявляют фотоокрашивания, обусловленного образованием открытых мероцианиновых структур.

В солевых спироциклических системах, содержащих объемные анионы, рыхлая упаковка кристаллической решетки не создает стерических затруднений для фотоизомеризации закрытой формы спиропирана в соответствующие фотоиндуцированные мероцианиновые изомеры. Таким образом, переход к катионным производным спиропиранов позволит инкорпорировать их в солевые структуры, кристаллы которых, за счет наличия противоионов, предоставляют больше пространства для успешного протекания фотоизомеризации.

Получение таких солевых систем со сложным плоскими двумерными метало-оксалатными анионами является эффективной методологией создания перспективных органических магнитов с управляемыми характеристиками. В настоящее время актуальным направлением в химии «умных» материалов, обладающих переключаемыми свойствами, является разработка новых гибридных полифункциональных материалов для молекулярной электроники. Кристаллы молекулярных магнетиков должны объединять в себе две функциональные подрешетки, одна из которых представлена анионами моно- и биметаллических оксалатных комплексов, являющихся эффективными мостиковыми лигандами для переноса магнитных взаимодействий между ионами металлов и используются в качестве магнитной подрешетки. В качестве катионной функциональной составляющей в молекулярный магнетик могут быть инкорпорированы катионные формы спиропиранов. В подобной системе спиросоединение действует как фотохимический молекулярный переключатель, возмущающий магнитную подрешетку.

Все современные системы записи/чтения/хранения информации работают в ближнем ИК-диапазоне.

Для возможного использования в таких системах фотохромных спиропиранов необходимо, чтобы максимумы поглощения открытой формы находился в области работы лазера. Так, например, распространенный гелий-неоновый лазер, используемый для считывания штрих-кодов, имеет рабочую длину волны 632,8 нм.

Актуальной проблемой современной химии функциональных материалов является синтез новых солевых производных спиропиранов и изучение их свойств, что позволит отработать подходы к получению новых магнитных материалов, потенциально обладающих способностью к фотопереключению в твердой фазе.

Известен 8'-метокси-1,3,3-триметил-спиро-индолино-2,2'-2Н-хромен 2, проявляющий фотохромные свойства (S. Torres R., A. L. Vazquez S., and E. A. Gonzdez S. Synthetic Communications. 1995, Vol. 25, № 1, 105 - 110).

Однако максимум поглощения его открытой формы находится в недостаточно длинноволновой области, не позволяющей использовать его в системах для записи/чтения/хранения информации.

Известен 6'-бром-1,3,3,-триметил-спиро индолино-2,2'-2Н-хромен формулы 3, проявляющий фотохромные свойства с максимумом длинноволновой полосы поглощения при 408 нм, что недостаточно для целей практического применения (Silvia Torres R. , Ana L. VAzquez S., and Eduardo A. Gonzdez S. Novel syntheses of spiropyran photochromatic compounds using ultrasound Synthetic communications, 25(1), 105-1 10 (1995).

Известен 1,3,3,6'-тетраметил-8' [(Е)-2-(1'',3'',3''-триметилиндолий-2''- ил)винил]спиро [индолин-2,2' 2H-хромен] перхлорат 4

(Pugachev, A.D., Ozhogin, I.V., Lukyanova, M.B., Lukyanov, B.S., Kozlenko, A.S., Rostovtseva, I.A., Makarova, N.I., Tkachev, V.V., Aldoshin, S.M., Metelitsa, A.V. Synthesis, structure and photochromic properties of indoline spiropyrans with electron-withdrawing substituents) Journal of Molecular Structure, 2021 V. 1229, Article 129615). Фотоиндуцированная форма его находится в том же спектральном диапазоне (708 нм для соединения 1 и 730 для соединений 4), однако он обладает низким временем жизни фотоокрашенной формы (8.4 сек).

Наиболее близким по структуре и достигаемому результату является 1,3,3-триметил-6'-бром-8' [(Е)-2-(1'',3'',3''-триметилиндолий-2''- ил)винил]спиро [индолин-2,2' 2H-хромен] перхлорат 5

(Artem D. Pugachev, Ilya V. Ozhogin, Maria B. Lukyanova, Boris S. Lukyanov, Irina A. Rostovtseva, Igor V. Dorogan, Nadezhda I. Makarova, Valery V. Tkachev, Anatoly V. Metelitsa, Sergey M. Aldoshin Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy. 2020. V. 230. Article 118041). Фотоиндуцированная форма его находятся в том же спектральном диапазоне (708 нм для соединения 1 и для соединений 5), однако он обладают низким временем жизни фотоокрашенной формы (238.7 сек).

Задачей изобретения является получение нового фотохромного катиона, который может быть инкорпорирован в анионную магнитную подрешетку в качестве фотохимического молекулярного переключателя.

Техническим результатом изобретения является увеличение времени жизни открытой формы спиропирана в ряду 1,3,3-триметилспиро-индолино-2,2'-[2Н]хроменов с заместителями в бензопирановом фрагменте.

Технический результат достигается соединением 1.

Изобретение удовлетворяет критерию изобретательского уровня, так как среди спиропиранов индолинового ряда не известна взаимосвязь между строением сложного заместителя в бензоядре 2Н-хроменового фрагмента молекулы и их фотохромными свойствами.

Соединение 1 получают исходя из иодида 1,2,3,3-тетраметил-5-метокси-индолилия и 4-бром-2,6-диформил-фенола.

Ниже приведён пример получения соединения 1.

Пример 1. 1,3,3-триметил-5-метокси-6'-бром-8'-[(Е)-2-(1'',3'',3''-триметил-5-метокси-3Н-индолий-2''-ил)винил]-спиро[индолин-2,2'-2Н-хромен] йодид.

В 10 мл изопропилового спирта растворяют 0.229 г (0.001 моль) 2,6-диформил-4-бромфенола и 0.662 г (0.002 моль) 1,2,3,3-тетраметил-5-метокси-индолия, по каплям добавляют 0.1 мл триэтиламина. Кипятят с обратным холодильником 3 часа. Осадок перекристаллизовывают из этанола, промывают водой и холодным этанолом. Получают темно бордовый порошок (0.275 г), выход 37.8 %, Т пл. 242-243°С.

ИК-спектр, см-1:1651, 1604 (νС=С), 1309 (νСар-N), 1074 (?Cl=O в ClO4-), 928 (νСспиро-O).

Спектр ЯМР 1H (CDCl3) δ, м.д.: 7.96 (d, J = 2.3 Hz, 1H, H-7′), 7.86 (d, J = 16.5 Hz, 1H, H-10′′), 7.63 (d, J = 8.8 Hz, 1H, H-7′′), 7.38 (d, J = 16.5 Hz, 1H, H-9′′), 7.32 (d, J = 2.2 Hz, 1H, H-5′), 7.01 (dd, J = 8.8, 2.4 Hz, 1H, H-6′′), 6.93 (d, J = 2.4 Hz, 1H, H-4′′), 6.85 (d, J = 10.3 Hz, 1H, H-4′), 6.79 (dd, J = 8.3, 2.5 Hz, 1H, H-6), 6.73 (d, J = 2.5 Hz, 1H, H-4), 6.52 (d, J = 8.4 Hz, 1H, H-7), 5.86 (d, J = 10.3 Hz, 1H, H-3′), 3.90 (s, 3H, N+-CH3), 3.87 (s, 3H, O-CH3), 3.82 (s, 3H, O-CH3), 2.69 (s, 3H, N-CH3), 1.42 (s, 3H, гем-С-CH3), 1.39 (s, 3H, гем-С-CH3), 1.25 (s, 3H гем-С-CH3), 1.19 (s, 3H, гем-С-CH3).

Спектр ЯМР 13C (CDCl3) δ, м.д.: 179.93 (С-2′′), 161.71 (С-8′′а), 154.52 (С-5), 154.24 (С-9′), 145.45 (С-5′′), 145.20 (C-10′′), 141.92 (С-8), 137.87 (С-8), 134.85 (С-8′′), 134.04 (C-5′), 133.33 (C-7′), 128.52 (C-4′), 122.10 (С-6′), 121.71 (С-8′), 121.21 (C-3′), 116.77 (C-7′′), 114.63 (С-9′а), 113.95 (C-6′′), 113.11 (C-9′′), 112.07 (C-6), 109.66 (C-4), 108.87 (C-4′′), 108.04 (C-2,2′), 107.97 (C-7), 56.35 (O-CH3), 56.32 (O-CH3), 52.56 (C-3′′), 52.06 (C-3), 36.47 (N+-CH3), 29.67 (N-CH3), 26.79 (гем-С-CH3), 26.64 (гем-С-CH3), 25.38 (гем-С-CH3), 20.06 (гем-С-CH3).

На рис. 1 приведён масс-спектр соединения 1. Масс-спектр: HRMS (ESI): m/z [M] + calcd для C34H36BrN2O3 : 599.1904; найдено 599.1888

Электронные спектры поглощения растворов исследуемого соединения до и после облучения регистрировались на спектрофотометре Cary 100 Scan. Для приготовления раствора использовали ацетонитрил («Aldrich») спектральной степени чистоты. На рис. 2 приведены изменения в спектрах поглощения спиропирана 1 при облучении УФ-светом (λобл = 365 нм, Δt = 30 c) в ацетонитриле, C = 3.3⋅10-5 M, Т = 293 K. На рис. 3 приведена кинетическая кривая термического процесса рециклизации в максимуме мероцианинового изомера спиропирана 1 в ацетонитриле, Т = 293 K. Точки - экспериментальные данные, линия - результат аппроксимации моно-экспоненциальной функции

Спектральные и кинетические характеристики соединения 1 приведены в таблице 1. Там же приведены результаты исследований для ближайших аналогов.

Таблица 1.
Соединение , нм , нм , с

1
206 245 275пл
318
321пл
426пл
450
708 1237.5

2
310 418

3
292
256
314пл
408 0,15

4
246
273пл
289пл
388
451
728 8.4

5
205
245
276пл
296
379
444пл
708 238.7

Как видно, время жизни соединения 1 существенно превышает этот показатель аналогов.

1. 1,3,3-триметил-5-метокси-6´-бром-8´-[(Е)-2-(1´´,3´´,3´´-триметил-5-метокси-3Н-индолий-2´´-ил)винил]-спиро[индолин-2,2´-2Н-хромен]йодид формулы 1

.

2. 1,3,3-триметил-5-метокси-6´-бром-8´-[(Е)-2-(1´´,3´´,3´´-триметил-5-метокси-3Н-индолий-2´´-ил)винил]-спиро[индолин-2,2´-2Н-хромен] йодид по п. 1, обладающий фотохромными свойствами.



 

Похожие патенты:

Группа изобретений относится к области пожарной безопасности, а именно к современным средствам контроля и предупреждения возникновения пожаров на ранней стадии путем постоянного локального, точечного мониторинга температур или перегрева электропроводки, контактных групп, клемм, оборудования и различных объектов за счет использования химических индикаторов комбинированного принципа действия, изменяющих свой цвет и выделяющих запах при температурном воздействии.

Изобретение может быть использовано при производстве чернил, содержащих микрокапсулированные термохромные пигменты. Термохромная пигментная композиция содержит краситель, представляющий собой электронодонорное органическое соединение, электроноакцепторное соединение и соединение формулы (I) ,где n=0-2 и m=5-19.

Изобретение относится к применению 2-монозамещенных пиразинов, содержащих трифениламиновый заместитель, общей формулы (I) в качестве мономолекулярных сенсоров для обнаружения нитроароматических соединений. Технический результат: предложено применение соединений общей формулы (I), которые показывают высокую чувствительность и селективность для визуального обнаружения широкого ряда нитроароматических соединений.

Группа изобретений относится к области прикладной электрохимии, а именно к устройствам на основе модифицированных электрохромных составов и способам их изготовления. Электрохромное устройство содержит два электрода, по меньшей мере, один из которых является оптически прозрачным.

Изобретение относится к новым донорно-акцепторным олигомерам общей формулы (I) где n означает целое число от 1 до 5; m означает целое число от 1 до 3, а также способу их получения, который заключается в том, что осуществляют реакцию конденсации Кневенагеля между малононитрилом и кетоном, выбранным из ряда соединений общей формулы (II) где n, m имеют вышеуказанные значения, новые соединения отличаются отсутствием алкильных групп, растворимостью в органических растворителях, высокой термической стабильностью и эффективным поглощением света в области от 400 до 800 нм.

Изобретение относится к полимерным частицам со средним диаметром первичных частиц от 50 нм до 10 мкм, содержащим относительно общей массы: А) от 10 до 100 мас.% полимерной фазы А, получаемой свободнорадикальной сополимеризацией миниэмульсии типа масло-в-воде со смесью мономеров в качестве масляной фазы, содержащей: i) 30-99,9 мас.% одного или нескольких моноэтиленненасыщенных мономеров I с по меньшей мере одной С12-С48-н-алкильной боковой цепью; ii) 0-60 мас.% одного или нескольких моноэтиленненасыщенных мономеров II с по меньшей мере одной С1-С11-н-алкильной и/или одной С3-С48-изоалкильной боковой цепью; iii) 0,1-20 мас.% одного или нескольких мономеров III с по меньшей мере двумя несопряженными этиленовыми двойными связями; iv) 0-69,9 мас.% одного или нескольких (гетеро)ароматических моноэтиленненасыщенных мономеров IV; v) 0-40 мас.% одного или нескольких других моноэтиленненасыщенных мономеров V; и В) от 0 до 90 мас.% полимерной фазы В, получаемой последующей свободнорадикальной привитой сополимеризацией в присутствии полимерной фазы А, полученной после стадии А), смеси мономеров, содержащей: i) 0-100 мас.% одного или нескольких мономеров VI, выбранных из группы С1-С10-алкил(мет)акрилатов; ii) 0-100 мас.% одного или нескольких (гетеро)ароматических моноэтиленненасыщенных мономеров VII; iii) 0-50 мас.% одного или нескольких других моноэтиленненасыщенных мономеров VIII, при этом массовые проценты смесей мономеров, используемых на соответствующих стадиях, составляют в сумме 100 мас.%, причем указанные полимерные частицы являются однофазными полимерными частицами из полимерной фазы А или двухфазными полимерными частицами, содержащими полимерную фазу А и полимерную фазу В.

Изобретение относится к области солнечной энергетики, в частности к фотосенсибилизаторам для металлоксидных солнечных элементов. Фотосенсибилизатор представляет собой 4-[(Е)-[(2Е)-3-[4-(диметиламино)фенил]проп-2-ен-1-илиден]амино]бензойную кислоту.

Изобретение относится к способу получения фотохромных оптических изделий. Способ включает (i) нанесение первого органического растворителя на поверхность оптической подложки с образованием смоченной органическим растворителем поверхности оптической подложки, (ii) нанесение отверждаемого фотохромного состава на смоченную органическим растворителем поверхность оптической подложки и (iii) по меньшей мере частичное отверждение вышеупомянутого отверждаемого слоя фотохромного покрытия.

Изобретения относятся к области светоослабляющих устройств, обеспечивающих изменение цвета под воздействием напряжения электрического тока, а именно к устройствам на основе электрохромных составов и технологии их изготовления. Электрохромное устройство содержит два электрода, по меньшей мере один из которых является оптически прозрачным.

Изобретение относится к новым соединениям в ряду индолиновых спиропиранов, а именно к 1',3',3',6-тетраметил-8-[(1,3,3-триметилиндол-1-иум-2-ил)винил]спиро[хромен-2,2'-индолин] перхлорату 1 и 8-метокси-1',3',3',-триметил-6-[(1,3,3-триметилиндол-1-иум-2-ил)винил]спиро[хромен-2,2'-индолин] перхлорату 2. Новые солевые производные 1,3,3-триметилспиро[хромен-2,2'-индолина] 1 и 2 проявляют фотохромные свойства в длинноволновой области спектра с λ=728 нм и λ=466 и 668 нм соответственно и имеют время жизни открытой формы 8.4 с для соединения 1 и 118.6 и 80.5 с для соединения 2.

Настоящее изобретение относится к применению соединения формулы (I) где X1, X2 и X3 независимо друг от друга представляют собой N или CH, при условии, что по меньшей мере два из X1, X2 и X3 представляют собой N; Y представляет собой N или CH; R1 и R2 независимо друг от друга представляют собой (i) морфолинил формулы (II) где стрелка обозначает связь в формуле (I); и где R3 и R4 независимо друг от друга представляют собой H, C1-C3алкил, необязательно замещенный одним или двумя OH, C1фторалкил, C1-C2алкокси, C1-C2алкоксиC1-C3алкил или CN; или R3 и R4 вместе образуют двухвалентный остаток -R5R6-, выбранный из C1-C3алкилена, необязательно замещенного 1-2 F, -CH2-O-CH2-, -CH2-NH-CH2- или любой из структур: где стрелки обозначают связи в формуле (II); или (ii) насыщенное 6-членное гетероциклическое кольцо Z, выбранное из тиоморфолинила и пиперазинила, необязательно замещенное 1-3 R7; где R7 в каждом случае независимо представляет собой C1-C3алкил, необязательно замещенный одним или двумя ОН, C1-C2фторалкил, C1-C2алкоксиC1-C3алкил, C3-C6циклоалкил; или два заместителя R7 вместе образуют двухвалентный остаток -R8R9-, выбранный из C1-C3алкилена, необязательно замещенного 1-4 F, -CH2-O-CH2- или -O-CH2CH2-O-; при условии, что по меньшей мере один из R1 и R2 представляет собой морфолинил формулы II, или пролекарства, сольвата или фармацевтически приемлемой соли указанного соединения для предупреждения или лечения неврологического расстройства у субъекта, где неврологическое расстройство выбрано из эпилепсии и нейродегенеративного заболевания.
Наверх