Водорастворимые сополимеры винилфосфоновой кислоты

Изобретение относится к синтезу водорастворимых (со)полимеров винилфосфоновой кислоты с собственной противовирусной активностью, обладающих молекулярной массой ММ = (5-310)•103, которые могут найти применение для разработки методов борьбы с инфекциями, вызванными вирусами гриппа. Синтез осуществляют методом радикальной (со)полимеризации, инициируемой 2,2’-азобис-изобутиронитрилом (ДАК) или 2,2’-азобис-(2-метилпропионамидино)дигидрохллоридом (АМП) в инертной атмосфере в водном растворе или органическом растворителе. Полученные данным синтезом (со)полимеры имеют следующую структурную формулу:

, где: m=13-100 мол.%, n=0-87 мол.%. Технический результат – разработка синтеза водорастворимых нетоксичных (со)полимеров винилфосфоновой кислоты с собственной противовирусной активностью. 1 табл., 2 пр.

 

Изобретение относится к биологически активным синтетическим полимерам, у которых обнаружена собственная высокая биологическая активность, точнее к новому применению водорастворимых сополимеров винилфосфоновой кислоты (ВФК) с соединениями (мет)акрилового ряда.

Известно, что фосфатсодержащие полимеры синтезируются в клетках и являются одним из факторов противовирусной защиты, в частности, против вируса SARS-CoV-2 (Schepler H., Wang X., Neufurth M., Wang S., Schröder H.C., Müller W.E.G. // Theranostics. 2021. V.11. №13. P.6193-6213. https://doi.org/10.7150/thno.59535). Сходную активность проявляют и синтетические полифосфаты против коронавируса (Neufurth M., Wang X., Tolba E., Lieberwirth I., Wang S., Schröder H.C., Müller W.E.G.//Biochem Pharmacol. 2020. V.182. P.114215. https://doi.org/10.1016/j.bcp.2020.114215; Müller W.E.G., Neufurth M., Wang S., Tan R., Schröder H.C., Wang X. // Mar. Drugs. 2020. V.18. №12.P.639.httpsHYPERLINK "https://doi.org/10.3390/md18120639"://HYPERLINK "https://doi.org/10.3390/md18120639"doiHYPERLINK "https://doi.org/10.3390/md18120639".HYPERLINK "https://doi.org/10.3390/md18120639"orgHYPERLINK "https://doi.org/10.3390/md18120639"/10.3390/HYPERLINK "https://doi.org/10.3390/md18120639"mdHYPERLINK "https://doi.org/10.3390/md18120639"18120639) и в отношении ВИЧ (Yang S., Pannecouque C., Herdewijn P. // Chem Biodivers. 2012. V.9. №10. P.2186-2194. https://doi.org/10.1002/cbdv.201200250; Pérez-Anes A., Stefaniu C., Moog C., Majoral J.P., Blanzat M., Turrin C.O., Caminade A.M., Rico-Lattes I. // Bioorg. Med. Chem.2010.V.18.№1.P.242-248.httpsHYPERLINK "https://doi.org/10.1016/j.bmc.2009.10.058"://HYPERLINK "https://doi.org/10.1016/j.bmc.2009.10.058"doiHYPERLINK "https://doi.org/10.1016/j.bmc.2009.10.058".HYPERLINK "https://doi.org/10.1016/j.bmc.2009.10.058"orgHYPERLINK "https://doi.org/10.1016/j.bmc.2009.10.058"/10.1016/HYPERLINK "https://doi.org/10.1016/j.bmc.2009.10.058"jHYPERLINK "https://doi.org/10.1016/j.bmc.2009.10.058".HYPERLINK "https://doi.org/10.1016/j.bmc.2009.10.058"bmcHYPERLINK "https://doi.org/10.1016/j.bmc.2009.10.058".2009.10.058).

При этом полимеры могут связываться как с поверхностью вириона, так и с поверхностью клеток-мишеней (X. Jiang, Z. Li, D.J. Young, M. Liu, C.Wu,, Y.-L. Wu, X.J. Loh.// Materials Today Advances. 2021. V. 10. P.100140). В обоих случаях фосфосодержащие полимеры блокируют процесс взаимодействия вируса с клеткой, снижая таким образом эффективность вирусной репродукции.

Описаны противовирусные свойства гомополимера ВФК против вируса Марбург, вируса атипичной пневмонии SARS-CoV и вируса гриппа. (Yang S., Pannecouque C., Herdewijn P. // Chem Biodivers. 2012. V.9. №10. P.2186-2194. https://doi.org/10.1002/cbdv.201200250; Pérez-Anes A., Stefaniu C., Moog C., Majoral J.P., Blanzat M., Turrin C.O., Caminade A.M., Rico-Lattes I. // Bioorg. Med. Chem. 2010. V.18. №1. P.242-248. https://doi.org/10.1016/j.bmc.2009.10.058 ; Schandock F., Riber C.F., Rocker A., Muller J.A., Harms M., Gajda P., Zuwaja K., Andersen H.F., Lovchall K.B., Tolstrup M., Kreppel F., Munch J., Zelikin A. Adv.healthcare mater. 2017. V.6. №. 23. P. 1700748. DOI: 10.1002/adhm.201700748).

В связи с широким распространением респираторных вирусных заболеваний актуальной задачей является синтез и поиск новых нетоксичных сополимеров винилфосфоновой кислоты с собственной противовирусной активностью. Указанная задача решается путем синтеза водорастворимых сополимеров винилфосфоновой кислоты методом радикальной сополимеризации, инициируемой 2,2’-азобис-изобутиронитрилом (ДАК) или2,2'-азобис-(2-метилпропионамидин) дигидрохлоридом (АМП) в инертной атмосфере, имеющих молекулярную массу ММ=(5-310)•103 общей структурной формулы:

,

где:

m=13-100 мол.%

n=0-87 мол.%.

Решение указанной задачи состоит в том, что: указанные сополимеры винилфосфоновой кислоты с 2-деокси-2-метакриламидо-D-глюкозой,с 4-акрилоилморфолином или акриламидом получены радикальной (со)полимеризацией.

Сополимеризация проводится в инертной атмосфере в водном растворе или органическом растворителе (диметилформамид, метанол). В качестве инициатора используется 2,2’-азобис-изобутиронитрил (ДАК) или 2,2'-азобис-(2-метилпропионамидин) дигидрохлорид (АМП)

Более полно процесс получения сополимеров ВФК изложен на следующих примерах.

Пример 1. Синтез сополимера ВФК с 2-деокси-2-метакриламидо-D-глюкозой

Смесь 1,75 г ВФК (0,0162 моль), 4 г МАГ (0,0162 моль), 0,15 г ДАК (2 мас.%), 53 мл диметилформамида нагревали в атмосфере аргона в запаянной ампуле при 60°С в течение 24 ч. Сополимеры для удаления низкомолекулярных примесей подвергали диализу против воды. Использовали диализные мембраны Spectra/Por 7 фирмы “Spectrum Lab. Inc.” (США), позволяющие удалять соединения с молекулярной массой М ≤ 1000. Сополимер из водных растворов выделяли лиофильной сушкой.Выход : 4, 1г (71%). Структура сополимера ВФК с 2-деокси-2-метакриламидо-D-глюкозой:

Строение сополимера подтверждали методами ИК и ЯМР спектроскопии. Состав устанавливали с помощью 1Н и 31Р ЯМР-спектроскопии в растворе D2О на спектрометре Bruker Avance 400 (Германия). В качестве внешнего стандарта при определении состава использовали 2-метакрилоилоксиэтилфосфорилхолин. Полученный сополимер содержал 35 мол.% звеньев ВФК. Молекулярную массу определяли методом седиментации и диффузии, его МSD=20⋅103.

Пример 2. Синтез сополимера ВФК с 4-акрилоилморфолином

Смесь 1,9 г ВФК (0,0173 моль), 2,5 г 4-АМ (0,0173 моль), 0,044 г (1 мас.%) АМП,18 мл воды нагревали в атмосфере аргона в запаянной ампуле при 60°С в течение 24 ч. Полимер очищали от низкомолекулярных примесей, выделяли и характеризовали аналогично Примеру 1. Выход: 2, 1 г (48%). Полученный сополимер содержал 56 мол.% звеньев ВФК, его МSD=33⋅103.Структура сополимера ВФК с 4-акрилоилморфолином:

Данные по противовирусной активности и токсичности исследуемых соединений in vitro представлены в таблице 1.

Таблица 1.

Цитотоксичность и противовирусная активность фосфорсодержащих полимеров в отношении вируса гриппа A/Puerto Rico/8/34 (H1N1) в культуре клеток MDCK.


(Сомономер: ВФК,
мол. %)
МSD,•10-3 CC50, мкг/мл IC50, мкг/мл SI
1 (ВФК/100) 30 >330 1.3 254
2 (МАГ:ВФК/85:15) 20 >330 280 1.2
3 (МАГ:ВФК/65:35) 5 >330 15.5 21.2
4 (4-АМ:ВФК/87:13) 77 30 >30 <1
5 (4-АМ: ВФК/85:15) 310 >330 356 <1
6 (4-АМ: ВФК/44:56) 33 302 1 302
7 (АА:ВФК/72:28) 25 84 72 1.2

Токсичность продуктов была изучена в отношении клеток MDCK. Клетки MDCK сеяли в 96-луночные планшеты и культивировали при 36°С в среде МЕМ с добавлением 10% сыворотки крупного рогатого скота в атмосфере 5% СО2 (в газопроточном инкубаторе Sanyo-175) до состояния монослоя. Из исследуемых соединений готовили маточный раствор концентрации 10 мг/мл в диметилсульфоксиде, после чего готовили серию трехкратных разведений препаратов в среде МЕМ от 1000 до 3,75 μg/ml. Растворенный препарат вносили в лунки планшетов и инкубировали 3 суток при 36°С. По истечении этого срока клетки промывали 2 раза по 5 минут фосфатно-солевым буфером, и количество живых клеток оценивали при помощи микротетразолиевого теста (МТТ). С этой целью в лунки планшетов добавляли по 100 мкл раствора (5 мг/мл) 3-(4,5-диметилтиазолил-2) 2,5-дифенилтетразолия бромида (ICN Biochemicals Inc., Aurora, Ohio) на физиологическом растворе. Клетки инкубировали при 37ºС в атмосфере 5% СО2 в течение 2 часов и промывали 5 минут фосфатно-солевым буфером. Осадок растворяли в 100 мкл на лунку ДМСО, после чего оптическую плотность в лунках планшетов измеряли на многофункциональном ридере ThermoMultiskan FC (ThermoFisherScientific, США) при длине волны 540 нм. По результатам теста для каждого продукта определяли 50% цитотоксическую дозу (CC50), т.е. концентрацию соединения, вызывающую гибель 50% клеток в культуре.

Определение противовирусной активности in vitro проводили на клетках MDCK в 96-луночных планшетах для клеточных культур. Соединения растворяли в поддерживающей среде для клеток, вносили в лунки панелей с клеточным монослоем и инкубировали в течение 1 часа при 36°С в атмосфере 5% CO2.

Из вируссодержащей жидкости (штамм A/Puerto Rico/8/34 (H1N1)) готовили серию десятикратных разведении от 10-1 до 10-7, добавляли в лунки с препаратами и инкубировали при 36°С в течение 48 часов в атмосфере 5% CO2. По окончании срока инкубации 100 мкл культуральной жидкости смешивали с равным объемом 1% куриных эритроцитов в отдельных планшетах с круглым дном. Учет результатов проводили через 60 минут инкубации при 20°С. За титр вируса принимали величину, обратную десятичному логарифму наибольшего разведения исходного вируса, способного вызвать положительную реакцию гемагглютинации в лунке.

Вирусингибирующее действие исследуемых соединений оценивали по снижению титра вируса в опыте по сравнению с контролем. На основании полученных данных рассчитывали 50 % ингибирующую дозу IC50, то eсть концентрацию препарата, снижающую уровень вирусной репродукции вдвое, и химиотерапевтический индекс, или индекс селективности (SI), представляющий собой отношение CC50 к IC50.

Из проанализированных данных максимальную активность (SI=302) имело соединение №6 таблицы 1.

Технический результат заключается в том, что полученные и изученные полимеры являются эффективными противовирусными средствами.

Заявленное техническое решение может найти применение для разработки методов борьбы с инфекциями, вызванными вирусами гриппа.

Синтез водорастворимых сополимеров винилфосфоновой кислоты, полученных методом радикальной сополимеризации, инициируемой 2,2’-азобис-изобутиронитрилом (ДАК) или 2,2'-азобис-(2-метилпропионамидин) дигидрохлоридом (АМП) в инертной атмосфере, обладающих молекулярной массой ММ=(5-310)•103 и с собственной противовирусной активностью, имеющих структурную формулу:

где:

m=13-100 мол.%

n=0-87 мол.%.



 

Похожие патенты:

Настоящее изобретение относится к способу получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена и может быть использовано в химической промышленности. Предложенный способ получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена в системе гидроксид калия/ДМСО при нагревании отличается тем, что реакцию с красным фосфором проводят при атмосферном давлении в токе ацетилена при температуре 105-115°С в течение 3 ч, без добавления воды в реакционную смесь и при мольном соотношении реагентов красный фосфор : полугидрат гидроксида калия : ДМСО, равном 0.10 : 0.154 : 2.11.

Изобретение относится к применению полимера, имеющего формулу (XIV) где радикалы являются такими, как определено в формуле изобретения, в качестве диспергирующего агента для веществ в порошковой форме, выбранных из группы, состоящей из глин, фарфорового шликера, силикатной пыли, мела, черной сажи, каменной пыли, пигментов, талька, полимерных порошков и минеральных вяжущих веществ.
Изобретение относится к области химии фосфорорганических соединений, в частности к фосфорорганическим полимерам. .

Изобретение относится к композициям для необрастающих покрытий и к полимерам для использования в таких композициях. .

Группа изобретений относится к способу предварительной обработки металлической поверхности, содержащей алюминий или алюминиевый сплав, кислотной водной композиции для получения конверсионного покрытия на металлической поверхности, содержащей алюминий или алюминиевый сплав, концентрату упомянутой кислотной водной композиции, а также к металлической поверхности, содержащей алюминий или алюминиевый сплав с конверсионным покрытием, полученной упомянутым способом, и ее применению.
Изобретение относится к радиационно-отверждаемой композиции покрытия для упаковочных материалов, содержащей метакрилат-функциональное соединение, представляющее собой метакрилат-функциональный простой полиэфируретан, ускоряющее адгезию метакрилатное соединение, представляющее собой смесь фосфата метакрилат-функционального мономера или олигомера и карбоксилата метакрилат-функционального мономера или олигомера.
Изобретение относится к наносимой непосредственно на металл, например, в качестве грунтовочного покрытия, кроющей композиции, содержащей полимеризующийся полиалкиленоксид(мет)акрилатнофосфатный сложный эфир с высоким содержанием сложного моноэфира, причем указанный фосфатный сложный эфир имеет массовое соотношение (монофосфатный сложный эфир):(дифосфатный сложный эфир) более 80:20; пленкообразующий полимер; и сшивающий агент, имеющий функциональные группы, выбранные из группы, состоящей из изоцианатных групп, эпоксидных групп, кислотных групп и аминогрупп, где указанный полимеризующийся полиалкиленоксид(мет)акрилатно-фосфатный сложный эфир представляет собой полимеризующийся промотор адгезии (или его соль), имеющий формулу: R1-C(O)-R2-OPO3H 2, в которой R1 представляет собой необязательно замещенный винильный радикал, выбранный из группы, состоящей из СН2=СН-, СН2=С(СН3)- или цис-СН(СООН)-СН-; и R2 представляет собой двухвалентный полиоксиалкиленовый радикал, имеющий примерно 2-50 оксиалкиленовых звеньев, и в котором n составляет от примерно 2 до примерно 50.

Изобретение относится к сополимерам диаллиламинофосфониевых солей с диоксидом серы, проявляющим антимикробную активность, и может найти применение в качестве антисептических и дезинфицирующих средств. .

Изобретение относится к способам получения фосфорсодержащих полимеров, конкретно к способам получения сополимеров виниловых мономеров с форфорсодержащим метакрилатами. .
Наверх