Установка для динамических испытаний цилиндрических образцов материалов на растяжение

Изобретение относится к испытательной технике и может быть использовано для проведения экспериментальных исследований свойств материалов в условиях высокоскоростного нагружения. Установка содержит механический копер и механизм передачи нагрузки. Механизм передачи нагрузки содержит основание П-образной формы со сквозным отверстием в центре крышки и корпус подвижный перевернутой П-образной формы, крышка которого размещена внутри основания и имеет сквозное отверстие в центре, по геометрии совпадающее со сквозным отверстием основания, зеркально отраженным относительно внутренней поверхности крышки корпуса подвижного. К основаниям стенок корпуса подвижного прикреплена плита ударная. В сквозных отверстиях крышки основания и крышки корпуса подвижного размещены стопорные полукольца, удерживающие уширенные цилиндрические части цилиндрического образца. К наружной поверхности крышки корпуса подвижного прикреплена пластина, закрывающая сквозное отверстие в данной крышке с наружной стороны. На наковальне механического копра, расположенной ниже плиты подкладной, на которой установлено основание, размещен демпфер, исключающий контакт плиты подкладной и крышки корпуса подвижного. Технический результат: создание установки для испытания цилиндрических образцов материалов на растяжение в диапазоне скоростей деформаций до 200 с-1 и более при одновременном обеспечении надежности ее работы. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к испытательной технике и может быть использовано для проведения экспериментальных исследований свойств материалов в условиях высокоскоростного нагружения.

Известна установка для динамических испытаний цилиндрических образцов материалов на растяжение, содержащая ударник, соосно установленные трубчатый передающий стержень, нагружающий стержень, стержень-динамометр с захватными элементами под испытуемый образец, выполненными в виде зубьев (SU 1283599, 15.01.87, G01N 3/30, 3/04). Стержень-динамометр размещен внутри трубчатого передающего стержня. Нагружающий стержень и стержень-динамометр выполнены каждый в виде двух параллельно установленных полуцилиндров, обращенных один к другому плоскими поверхностями. Концы полуцилиндров, фиксирующие испытуемый образец, охвачены обоймами, выполненными из материала с эффектом памяти. На стержне-динамометре размещены тензодатчики.

Недостатком данной установки является необходимость нагрева обойм для обеспечения надежного крепления образца, требующего использования дополнительного нагревательного оборудования, обеспечения режима нагрева, при котором реализуется равномерное распределение температуры по объему обойм. Это сказывается на повышении затрат на проведение испытаний. Кроме того, в представленной установке обеспечивается незначительная площадь контакта концов полуцилиндров и цилиндрического образца, что занижает надежность его крепления при проведении испытаний.

Известна установка для динамических испытаний цилиндрических образцов материалов на растяжение, содержащая статическую разрывную машину с подвижной траверсой, размещенной между неподвижной траверсой и основанием, с которым связан пассивный захват для закрепления испытуемого образца (SU 890134, 15.12.81, G01N 3/30). Активный захват для закрепления испытуемого образца связан с подвижной траверсой. Соосно захватам испытуемого образца установлен вспомогательный разрушаемый при заданной статической нагрузке элемент, связанный одним концом с подвижной траверсой, а другим - с неподвижной. Связь вспомогательного элемента с подвижной траверсой и неподвижной траверсой осуществляется посредством реверсора, выполненного в виде малой и большой скоб, причем малая скоба может перемещаться в большой скобе. Подвижная траверса перемещается на колоннах.

Динамическое растяжение образца на представленной установке осуществляется в результате разрушения вспомогательного элемента и резкого перемещения вверх подвижной траверсы с активным захватом с закрепленным в нем концом образца. В результате чего повышается износ элементов установки, определяющих перемещение подвижной траверсы, обеспечиваются незначительные скорости деформации с позиции реализации динамического нагружения.

Известна установка для динамических испытаний цилиндрических образцов материалов на растяжение, содержащая механический копер, механизм передачи нагрузки, корпус с закрепленным в нем динамометрическим стержнем с пассивным захватом для образца (SU 1273773 А1, 30.11.86, G01N 3/30). Механизм передачи нагрузки выполнен в виде тележки, на раме которой закреплен активный захват для образца, и плоского кулачка с логарифмическим профилем рабочей поверхности, установленного с возможностью соударения с деформирующим узлом механического копра и вставленного между корпусом и осью колесной пары тележки. На оси колесной пары тележки установлен ролик, контактирующий с рабочей поверхностью кулачка. Поверхность корпуса оснащена роликами.

Кулачок с логарифмическим профилем, колесная пара тележки, ролики, используемые при передаче нагрузки образцу от деформирующего узла копра, обладают малой износостойкостью, что снижает надежность работы установки. Сложность конструкции механизма передачи нагрузки приводит к уменьшению нагрузки передаваемой образцу от деформирующего узла, вследствие чего обеспечиваются невысокие скорости деформации.

Данная установка выбрана в качестве прототипа.

Технической задачей предложенного изобретения является создание установки для испытания цилиндрических образцов материалов на растяжение в диапазоне скоростей деформаций до 200 с-1 и более при одновременном обеспечении надежности ее работы.

Техническая задача решается тем, что в предлагаемой установке для динамических испытаний цилиндрических образцов материалов на растяжение, содержащей механический копер и механизм передачи нагрузки, механизм передачи нагрузки содержит основание «П»-образной формы со сквозным отверстием в центре крышки, корпус подвижный перевернутой «П»-образной формы, крышка которого размещена внутри основания и имеет сквозное отверстие в центре, по геометрии совпадающее со сквозным отверстием основания, зеркально отраженным относительно внутренней поверхности крышки корпуса подвижного. К основаниям стенок корпуса подвижного прикреплена плита ударная. В сквозных отверстиях крышки основания и крышки корпуса подвижного размещены стопорные полукольца, удерживающие уширенные цилиндрические части цилиндрического образца. К наружной поверхности крышки корпуса подвижного прикреплена пластина, закрывающая сквозное отверстие в данной крышке с наружной стороны. На наковальне механического копра, расположенной ниже плиты подкладной, на которой установлено основание, размещен демпфер, исключающий контакт плиты подкладной и крышки корпуса подвижного. Поверхность сквозного отверстия крышки основания включает вертикальную цилиндрическую поверхность, горизонтальную кольцевую поверхность, поверхность, имеющую форму усеченного конуса. Вертикальная цилиндрическая поверхность переходит в горизонтальную кольцевую поверхность, переходящую, в свою очередь, в поверхность, имеющую форму усеченного конуса. Контур верхнего основания цилиндрической внутренней поверхности сквозного отверстия крышки основания лежит на наружной поверхности данной крышки. Контур малого основания поверхности, имеющей форму усеченного конуса, лежит на внутренней поверхности крышки основания.

Изобретение поясняется фигурой, на которой представлены основные элементы установки.

Установка для динамических испытаний цилиндрических образцов материалов на растяжение содержит механический копер, имеющий деформирующий узел 1, способный совершать вертикальное возвратно-поступательное движение, и механизм передачи нагрузки. Механизм передачи нагрузки включает в себя основание 2 «П»-образной формы со сквозным отверстием в центре крышки, корпус подвижный 3 перевернутой «П»-образной формы, крышка которого размещена внутри основания 2 и имеет сквозное отверстие в центре, по геометрии совпадающее со сквозным отверстием основания 2, зеркально отраженным относительно внутренней поверхности крышки корпуса подвижного 3. К основаниям стенок корпуса подвижного 3 прикреплена плита ударная 4. В сквозных отверстиях крышки основания 2 и крышки корпуса подвижного 3 размещены стопорные полукольца 5 для удержания верхней и нижней уширенных цилиндрических частей цилиндрического образца 6. Основание 2 установлено на плите подкладной 7, под которой расположена месдоза 8, размещенная на наковальне 9 механического копра. К наружной поверхности крышки корпуса подвижного 3 прикреплена пластина 10, закрывающая сквозное отверстие в данной крышке с наружной стороны. На наковальне 9 для исключения контакта плиты подкладной 7 с крышкой корпуса подвижного 3 размещен демпфер 11.

В частном случае исполнения поверхность сквозного отверстия крышки основания 2 состоит из трех частей: вертикальная цилиндрическая поверхность, горизонтальная кольцевая поверхность, поверхность, имеющая форму усеченного конуса. Вертикальная цилиндрическая поверхность переходит в горизонтальную кольцевую поверхность, переходящую, в свою очередь, в поверхность, имеющую форму усеченного конуса. Контур верхнего основания цилиндрической внутренней поверхности сквозного отверстия крышки основания 2 лежит на наружной поверхности данной крышки. Контур малого основания поверхности, имеющей форму усеченного конуса, лежит на внутренней поверхности крышки основания 2.

Кольцо, образуемое стопорными полукольцами 5 при их парном размещении в сквозных отверстиях крышки основания 2 или крышки корпуса подвижного 3, имеет сквозное отверстие, ось симметрии которого совпадает с осью кольца. Форма внешней поверхности кольца, совпадает как с формой сквозного отверстия крышки основания 2, так и с формой сквозного отверстия крышки корпуса подвижного 3.

Установка для динамических испытаний цилиндрических образцов материалов на растяжение с учетом вышеприведенного описания работает следующим образом.

Перед монтажом в установке цилиндрического образца 6 удаляют пластину 10, стопорные полукольца 5 из сквозного отверстия крышки корпуса подвижного 3.

В сквозном отверстии крышки основания 2 размещают два стопорных полукольца 5, одновременно располагая в сквозном отверстии кольца, образуемого стопорными полукольцами 5, верхнюю уширенную часть цилиндрического образца 6. Полукольца 5 обеспечивают надежное удержание уширенной части цилиндрического образца 6 в сквозном отверстии крышки основания 2.

Корпус подвижный 3 с плитой ударной 4 перемещают вверх до момента полного вхождения нижней уширенной части цилиндрического образца 6 в сквозное отверстие крышки корпуса подвижного 3.

В сквозном отверстии крышки корпуса подвижного 3 размещают два стопорных полукольца 5, одновременно располагая в сквозном отверстии кольца, образуемого стопорными полукольцами 5, нижнюю уширенную часть цилиндрического образца 6, при необходимости незначительно поднимая или опуская корпус подвижный 3.

К наружной поверхности крышки корпуса подвижного 3 прикрепляют пластину 10, закрывая сквозное отверстие в данной крышке и тем самым повышая надежность размещения в сквозном отверстии крышки корпуса подвижного 3 стопорных полуколец 5.

Деформирующий узел 1 механического копра поднимают над плитой ударной 4 на необходимую высоту, выбираемую в зависимости от требуемой скорости деформации и растягивающей силы цилиндрического образца 6. Реализуют падение деформирующего узла 1, который в некоторый момент времени контактирует с плитой ударной 4. Плита ударная 4 перемещается вертикально вниз. При этом одновременно аналогичное движение совершают корпус подвижный 3, стопорные полукольца 5, расположенные в сквозном отверстии крышки корпуса подвижного 3, нижняя уширенная часть цилиндрического образца 6 - осуществляется растягивание цилиндрического образца 6. Плита подкладная 7 и месдоза 8, установленная на наковальне 9 механического копра, обеспечивают измерение растягивающей силы. Рабочее перемещение деформирующего узла 1 механического копра происходит под действием сил гравитации.

Демпфер 11 препятствует контакту крышки корпуса подвижного 3 с плитой подкладной 7.

В случае разрушения цилиндрического образца 6 пластина 10 не позволяет стопорным полукольцам 5 и нижней уширенной части цилиндрического образца 6 самопроизвольно выпасть из отверстия крышки корпуса подвижного 3.

Таким образом, предложенная установка в экспериментальном исследовании свойств материалов в условиях высокоскоростного нагружения благодаря применению механизма передачи нагрузки позволяет испытывать цилиндрические образцы на растяжение при скоростях деформаций до 200 с-1 и более, обеспечивая при этом высокую надежность работы установки.

1. Установка для динамических испытаний цилиндрических образцов материалов на растяжение, содержащая механический копер и механизм передачи нагрузок, отличающаяся тем, что механизм передачи нагрузки содержит основание П-образной формы со сквозным отверстием в центре крышки, корпус подвижный перевернутой П-образной формы, крышка которого размещена внутри основания и имеет сквозное отверстие в центре, по геометрии совпадающее со сквозным отверстием основания, зеркально отраженным относительно внутренней поверхности крышки корпуса подвижного, к основаниям стенок корпуса подвижного прикреплена плита ударная, в сквозных отверстиях крышки основания и крышки корпуса подвижного размещены стопорные полукольца, удерживающие уширенные цилиндрические части цилиндрического образца, к наружной поверхности крышки корпуса подвижного прикреплена пластина, закрывающая сквозное отверстие в данной крышке с наружной стороны, на наковальне механического копра, расположенной ниже плиты подкладной, на которой установлено основание, размещен демпфер, исключающий контакт плиты подкладной и крышки корпуса подвижного.

2. Установка по п. 1, отличающаяся тем, что поверхность сквозного отверстия крышки основания включает вертикальную цилиндрическую поверхность, горизонтальную кольцевую поверхность, поверхность, имеющую форму усеченного конуса, вертикальная цилиндрическая поверхность переходит в горизонтальную кольцевую поверхность, переходящую, в свою очередь, в поверхность, имеющую форму усеченного конуса, контур верхнего основания цилиндрической внутренней поверхности сквозного отверстия крышки основания лежит на наружной поверхности данной крышки, контур малого основания поверхности, имеющей форму усеченного конуса, лежит на внутренней поверхности крышки основания.



 

Похожие патенты:

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки при разных температурах, и может быть использовано для определения температуры вязко-хрупкого перехода металлических материалов.

Изобретение предназначено для исследования механических свойств материалов, подвергаемых воздействию интенсивных динамических нагрузок и высокоскоростной деформации. Устройство для испытаний на сжатие образца материала на стержне Гопкинсона-Кольского содержит входной и выходной стержни, расположенные с двух сторон от образца.

Изобретение относится к области исследований прочностных характеристик материалов, в которых оснащенные измерительными системами ударники используются для количественной оценки характеристик реологических сред. Сущность: осуществляют метание ударника, содержащего измерительный узел, измеряющий линейные ускорения в процессе движения ударника в преграде в шкале времени измерительного узла.

Изобретение относится к области железнодорожного транспорта, а именно к приборам для замера плотности щебеночного основания для оценки равномерности уплотнения железнодорожного пути, и может быть использовано при проведении ремонтно-восстановительных работ железнодорожного пути, при проведении экспертизы качества выполненных работ при обследованиях пути.

Изобретение относится к технике ударного эксперимента и предназначено для обеспечения максимального соответствия ударного спектра заданным условиям высокоинтенсивного ударного нагружения. Сущность: осуществляют ударное воздействие на объект испытаний (ОИ) через наковальню, установленную на преобразователе ударного импульса в затухающие колебания.

Изобретение относится к испытательной технике и может быть использовано для проведения экспериментальных исследований свойств материалов в условиях высокоскоростного нагружения. Установка содержит механический копер и механизм передачи нагрузки плоскому образцу.

Изобретение относится к области испытаний на ударные воздействия и может быть использовано в первую очередь при проведении испытаний на ударные воздействия многослойных устройств в виде, например, пакетов пластин из композиционных материалов и сотовых панелей, использующихся при изготовлении конструкционных элементов транспортных машин, в частности - летательных аппаратов.

Изобретение относится к измерительной технике, а конкретно к проникающим зондам (ПЗ) или пенетрометрам для исследования процесса высокоскоростного проникания в преграду с определением множества параметров состояния взаимодействующих материалов зонда и грунта во время проникновения, оснащенных соответствующими датчиками физических параметров в составе регистрирующей аппаратуры (РА), соединенной линией связи с передающей аппаратурой (ПА), транслирующей полученную информацию непосредственно на поверхность преграды.

Изобретение относится к испытательной технике, а именно к машинам для испытания бетонных и железобетонных образцов на продавливание при ударных нагрузках. Стенд содержит силовой пол, на котором жестко закреплено опорное основание, вертикальные направляющие, закрепленные на опорном основании, имеющие ограничители падения груза, состоящие из муфт, закрепленных болтами к вертикальным направляющим через резиновые прокладки, груз, закрепленный на вертикальных направляющих, образец, сверху на который установлен силоизмеритель с насадкой-демпфером.

Изобретение относится к области проведения испытаний для изучения свойств образца под воздействием плоских ударных волн, конкретно к плосковолновому нагружающему устройству, которое может найти применение в целом ряде газодинамических исследований, проводимых в научных институтах. В частности, оно может быть использовано для исследования процессов диспергирования металлов при выходе нестационарной ударной волны на свободную поверхность с применением широкого диапазона регистрирующих методик.

Использование: для исследования процессов деформирования резиноподобных материалов при изменении температуры. Сущность изобретения заключается в том, что используют кольцевой образец, т.е.
Наверх