Способ изготовления полупроводникового прибора

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов. Способ изготовления полупроводниковых приборов включает процессы формирования активных областей полевого транзистора и контактов к ним. При этом согласно изобретению контакты формируют путем последовательного нанесения при температуре 250°С и давлении 2*10-5Па слоя германия толщиной 150 нм со скоростью осаждения 3 нм/с, слоя Ni толщиной 200 нм со скоростью осаждения 1 нм/с с последующим отжигом при температуре 300°С в течение 15 мин в атмосфере аргона. Изобретение позволяет повысить процент выхода годных приборов и улучшить их надежность. 1 табл.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов с пониженным сопротивлением.

Известен способ изготовления полупроводникового прибора [Пат. 5309025 США, МКИ H01L 23/29] путем создания контактов на полупроводниковых кристаллах, имеющих повышенную прочность на отрыв, формированием матрицы из островков металлизации в виде прямоугольных площадок, в которых нижний барьерный слой образован TiN, а верхним проводящим слоем служит AI,Ti или W. Затем на всю площадь контакта напыляется второй проводящий слой AI. В таких приборах из-за не технологичности формирование барьерного слоя образуется большое количество дефектов, которые ухудшают электрические параметры приборов.

Известен способ изготовления полупроводникового прибора [Пат. 5296386 США, МКИ H01L 21/265] путем создания контактов к областям стока/истока в полевых транзисторах, созданием промежуточного контактного слоя Si, обогащенного германием, имплантацией Ge или эпитаксиальным выращиванием твердого раствора Si-Ge.

Недостатками этого способа являются:

- высокие значения контактного сопротивления;

- повышенная дефектность;

- низкая технологичность.

Задача, решаемая изобретением: снижение контактного сопротивления, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается путем последовательного нанесения при температуре 250°С и давлении 2*10-5Па, слоя германия толщиной 150 нм, со скоростью осаждения 3 нм/с, слоя Ni толщиной 200 нм, со скоростью осаждения 1 нм/с, с последующим отжигом при температуре 300°С в течение 15 мин в атмосфере аргона.

Технология способа состоит в следующем: после формирования активных областей истока, стока, по стандартной технологии, последовательно наносят при температуре 250°С и давлении 2*10-5Па, слой германия толщиной 150 нм, со скоростью осаждения 3 нм/с, слой Ni толщиной 200 нм, со скоростью осаждения 1 нм/с, с последующим отжигом при температуре 300°С в течение 15 мин в атмосфере аргона.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Таблица
Параметры полупроводникового прибора, изготовленного по стандартной технологии Параметры полупроводникового прибора, изготовленного по предлагаемой технологии
плотность дефектов, см-2 Контактное сопротивление,
R.10-6 Ом.см2
плотность дефектов, см-2 Контактное сопротивление,
R.10-6 Ом.см2
1 10,1 5,4 0,9 1,1
2 10,2 3,5 1,2 0,9
3 12,1 5,2 0,8 0,7
4 10,7 5,3 0,9 0,8
5 10,4 6,5 1,5 1,3
6 10,6 5,7 0,8 1,0
7 10,2 5,6 0,8 0,6
8 9,7 6,7 0,7 0,7
9 10,5 5,5 0,8 1,2
10 10,9 5,6 0,9 0,8
11 11,3 6,1 0,7 0,6
12 11,1 5,7 0,9 0,7
13 10,4 6,1 0,8 0,8

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 15,6%.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Технический результат: снижение контактного сопротивления, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.

Предложенный способ изготовления полупроводникового прибора путем последовательного нанесения при температуре 250°С и давлении 2*10-5Па, слоя германия толщиной 150 нм, со скоростью осаждения 3 нм/с, слоя Ni толщиной 200 нм, со скоростью осаждения 1 нм/с, с последующим отжигом при температуре 300°С в течение 15 мин в атмосфере аргона, позволяет повысить процент выхода годных приборов и улучшит их надежность.

Способ изготовления полупроводникового прибора, включающий процессы формирования активных областей полевого транзистора и контактов к ним, отличающийся тем, что контакты формируют путем последовательного нанесения при температуре 250°С и давлении 2*10-5Па слоя германия толщиной 150 нм со скоростью осаждения 3 нм/с, слоя Ni толщиной 200 нм со скоростью осаждения 1 нм/с с последующим отжигом при температуре 300°С в течение 15 мин в атмосфере аргона.



 

Похожие патенты:
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов с силицидом молибдена с пониженным значением контактного сопротивления. Способ изготовления полевых транзисторов включает процессы формирования активных областей полевого транзистора и электродов к ним, подзатворного диэлектрика и силицида, при этом силицид молибдена - МоSi2 формируют на подложках кремния р-типа проводимости с ориентацией (100), с удельным сопротивлением 10 Ом⋅см путем осаждения пленки молибдена Мо на пластине кремния при давлении 6,5⋅10-9 Па, температуре подложки 700°С, со скоростью роста 0,1 нм/с и последующим отжигом в форминг-газе при температуре 900°С в течение 60 мин.
Изобретение относится к области технологии производства полупроводниковых приборов. Способ формирования силицида включает электронно-лучевое нанесение палладия толщиной 50 нм в вакууме на кремниевую подложку и отжиг, при этом согласно изобретению нанесение осуществляют испарением, которое проводят в вакууме при давлении 1·10-5 Па с последующим воздействием пучка ионов Ar энергией 200 кэВ под углом 7° дозой 3·1016 см-2 и плотностью тока ионного пучка 1,5 мкА/см2 при температуре 50°С со скоростью роста 0,3 нм/с, а отжиг осуществляют при температуре 200°С в вакууме 1·10-3 Па в течение 10 мин.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактов с низким сопротивлением. Способ изготовления контактов включает нанесение на p-Si подложку пленки титана с последующей низкотемпературной обработкой при температуре 650°С в течение 30 с в потоке азота N2 и с последующей высокотемпературной обработкой, при этом согласно изобретению формируют контакт TiNxOy/TiSi на p-Si подложке нанесением пленки Ti толщиной 70 нм со скоростью 0,5 нм/с, при температуре подложки 450°С, давлении 10-5 Па, с последующей низкотемпературной обработкой в потоке азота N2 200 см3/мин, а последующую высокотемпературную обработку проводят при температуре 950-1050°С в течение 10 с в атмосфере аммиака NH3.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкопленочных транзисторов с пониженным значением токов утечек. Способ изготовления тонкопленочного транзистора включает формирование аморфного кремния a-Si осаждением со скоростью 0,5 нм/с в индукционно-плазменном реакторе из смеси РН3-SiH4, при частоте 13,55 МГц, напряжении 250 В, температуре подложки 300°С, давлении газа 6,6 Па, скорости потока смеси 5 см3/мин и отношении концентраций PH3/SiH4=10-6-10-3.
Изобретение относится к области технологии производства полупроводниковых приборов. Технология способа состоит в следующем: на кремниевой подложке 10 Ом*см (100), р-типа проводимости после обработки излучением галогенных ламп в Н2 при температуре 1000°С в течение 10 с формируют пленку оксидного слоя.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления силицида титана с пониженным значением контактного сопротивления. Способ изготовления полупроводниковых приборов включает процессы формирования активных областей полевого транзистора и электроды к ним, подзатворого диэлектрика и силицида титана, при этом согласно изобретению на подложках кремния р-типа проводимости с ориентацией (100), с удельным сопротивлением 10 Ом*см формируют силицид титана путем осаждения пленки титана Тi толщиной 75 нм при давлении 3*10-6Па, температуре подложки 60°С, со скоростью роста 1 нм/с и последующей обработкой структур ионами Si с энергией 85 кэВ дозой 1*1015-1*1016 см-2, с низкотемпературным отжигом при температуре 650°С в течение 30 с в атмосфере азота N2 и с проведением высокотемпературного отжига при температуре 1050°С в течение 20 с в атмосфере азота N2.
Способ формирования пленки оксинитрида кремния толщиной 50 нм на подложке кремния при температуре 380°С, давлении 133 Па, при потоке SiН4 – 390 см3/мин, N2О - 1300 см3/мин и NН3 -1200 см3/мин, с последующей термообработкой при температуре 850°С в течение 10 мин позволяет повысить процент выхода годных приборов и улучшить их надёжность..

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с пониженным контактным сопротивлением. Сущность: на пластинах GaAs после создания активных областей полупроводникового прибора формировали контакты Pd/Ni/Ge последовательным нанесением в вакууме при давлении 10-5 Па слоя германия (Ge) толщиной 20 нм со скоростью осаждения 3 нм/с, слоя никеля (Ni) толщиной 15 нм со скоростью осаждения 1 нм/с, слоя палладия (Pd) толщиной 50 нм со скоростью осаждения 0,5 нм/с при температуре подложки 100°С с последующей термообработкой при температуре 450°С в форминг-газе в течение 2 мин.
Использование: для создания силицида никеля. Сущность изобретения заключается в том, что способ изготовления силицида никеля содержит осаждение пленки никеля Ni толщиной 30-50 нм в вакууме 3*10-6Па со скоростью роста 2 нм/с и последующей обработкой структур ионами ксенона Хе при температуре 175°С с энергией 300 кэВ, дозой 1*1015 см-2 и отжигом при температуре 240°С в течение 20 мин в атмосфере.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления контактно-барьерной металлизации прибора. Технология способа состоит в следующем: на кремниевую подложку р-типа проводимости, ориентации (100), удельным сопротивлением 10 Ом*см с изолирующим слоем оксида кремния толщиной 0,35 мкм формируют последовательным нанесением пленки Со толщиной 25 нм методом термического испарения в вакууме 2*10-3 Па со скоростью осаждения 1 нм/с с последующим двухступенчатым отжигом: в начале при температуре 450°С в течение 30 мин в среде водорода, с образованием CoSi2, затем при температуре 910°С в течение 10 мин в среде аргона Ar.
Наверх