Вакуумплотный слабопроводящий керамический материал и способ его получения


C04B35/62615 - Формованные керамические изделия, характеризуемые их составом (пористые изделия C04B 38/00; изделия, характеризуемые особой формой, см. в соответствующих классах, например облицовка для разливочных и плавильных ковшей, чаш и т.п. B22D 41/02); керамические составы (содержащие свободный металл, связанный с карбидами, алмазом, оксидами, боридами, нитридами, силицидами, например керметы или другие соединения металлов, например оксинитриды или сульфиды, кроме макроскопических армирующих агентов C22C); обработка порошков неорганических соединений перед производством керамических изделий (химические способы производства порошков неорганических соединений C01)

Владельцы патента RU 2793109:

Федеральное государственное бюджетное учреждение науки Институт химии твердого тела механохимии Сибирского отделения Российской академии наук (RU)

Изобретение относится к области керамического материаловедения и может быть использовано в производстве слабопроводящего вакуумплотного керамического материала для применения в электронной технике в качестве элемента вакуумной системы для снятия статического заряда, а также в качестве составляющей структурной керамики. Вакуумплотный слабопроводящий керамический материал на основе оксида алюминия дополнительно содержит BaO, Fe2O3, Li2О при следующем соотношении компонентов, мас. %: Al2O3 61,7; BaO 18,5; Fe2O3 19,4; Li2О 0,4. Способ получения вакуумплотного слабопроводящего керамического материала, состоит в том, что из вышеуказанного состава готовят порошковую композицию, осуществляют механоактивацию состава в центробежной планетарной мельнице, получают формовочную смесь путём смешивания порошковой композиции с дистиллированной водой, влажность формовочной смеси доводят до 9 %, формуют заготовки методом полусухого прессования при давлении 200 МПа, высушивают при температуре 200 °С до остаточной влажности не более 4 %. После сушки проводят термообработку заготовок при температуре 1600 °C в течение не менее 2 ч в воздушной среде. Технический результат заявляемого технического решения заключается в снижении технологической сложности способа и его энергозатрат. Готовый керамический материал обладает удельной электрической проводимостью 1,50·10−7-1,05·10−4 См/см и скоростью утечки гелия при продолжительности испытания, равной 30 мин, < 5·10-10 мбар·л/с. 2 н.п. ф-лы, 1 табл.

 

Изобретение относится к области керамического материаловедения и может быть использовано в производстве слабопроводящего вакуумплотного керамического материала для применения в электронной технике в качестве элемента вакуумной системы для снятия статического заряда, а также в качестве составляющей структурной керамики.

К керамическим материалам, применяемым в качестве элемента вакуумной системы, а именно для снятия статического заряда с внутренних поверхностей камер, предъявляют жесткие требования, заключающиеся в обеспечении вакуумплотных характеристик, механической прочности. Удельная электропроводность материалов, значения которой находятся в диапазоне 10-13-10-5 См/см, обычно достаточно, чтобы предотвратить опасные накопления заряда.

Данные характеристики определяются как составом керамического материала, так и способом его изготовления.

Известен способ получения вакуумплотной алюмооксидной керамики [1. SU 228584 A1, опубл. 08.10.1968, Бюл. № 30], сущность которого состоит в следующем: технический γ-глинозем перемешивают с 1 % MgCl2 и 1 % Н3ВО3 в водной среде, высушенную и гранулированную шихту обжигают при температуре 1550-1600 °С в течение 4 час, что приводит к преобразованию γ-Al2O3 в α-Al2O3 и улетучиванию примесей Na2O в виде метаборатов, полученный спек размалывают, из него формуют изделия методом горячего литья под давлением (с 10 % парафино-олеиновой связки) или прессованием, из предварительно подготовленного порошка изделия до вакуумплотного состояния спекаются при 1600-1650 °С и достигают объемного веса около 3,9 г/см3.

Недостатком данного технического решения является многостадийность подготовки керамической шихты, включающая дополнительный обжиг при достаточно высоких температурах 1550-1600 °С.

Известен способ изготовления вакуумплотных изделий из керамического материала для электронной техники [2. RU 2427554 C1, опубл. 27.08.2011, Бюл. № 24], включающий приготовление формовочной массы смешиванием порошка спека на основе оксида алюминия с удельной поверхностью (4,5-6,0)·103 см2/г и связующего – парафина или поливинилового спирта в количестве (16-18) мас.% от общей массы порошка спека, перемешивание формовочной массы до однородного состояния и ее активацию, формование из формовочной массы заданных изделий посредством холодного прессования с усилием не менее 700 кГ/см2 с последующим их обжигом. Активацию формовочной массы осуществляют посредством протирания через мелкоячеистое сито 0,25-0,28 мм, а обжиг изделий проводят в восстановительной среде по режиму – подъем температуры до 1630-1650 °С в течение 7-8 ч, выдержка при этой температуре в течение 4-5 ч и охлаждение в течение 7-8 ч до нормальной температуры. Затем изделия шлифуют до чистоты не менее 7 класса, проводят прокалку при температуре 1300-1350 °С, наносят заданное металлизационное покрытие заданных поверхностей изделий.

Недостатком данного технического решения является: использование связующего компонента, что требует необходимость введения в технологический процесс дополнительной стадии выжигания (в случае использования парафина) при высокой температуре 980-1000 °С и длительном времени – в течение 35-36 ч; проведение обжига в восстановительной среде требует специального дорогостоящего оборудования и отрицательно сказывается на себестоимости продукции; невысокая механическая прочность, не более 370 МПа.

В описанных выше способах получения керамические материалы обладают вакуумной плотностью, однако представляют собой диэлектрики (имеют низкие значения тангенса угла диэлектрических потерь около 10-4).

Наиболее близким по техническому решению и достигаемому эффекту является способ получения проводящего вакуумноплотного керамического композиционного материала на основе оксида алюминия, описанный в работе [3. Shutilov R.A., Kuznetsov V.L., Moseenkov S.I., Karagedov G.R., Krasnov A.A., Logachev P.V. Vacuum-tight ceramic composite materials based on alumina modified with multi-walled carbon nanotubes // Materials Science and Engineering: B. 2020. Т. 254. Art. No 114508.]. Способ основан на использовании нанопорошка α-Al2O3, состоящего преимущественно из сферических частиц со средним размером около 100 нм, в сочетании с многостенными углеродными нанотрубками (МУНТ) в качестве модифицирующих токопроводящих добавок. Композиты получают с концентрацией МУНТ 0,35 мас.%. Предварительно готовят суспензию методом ультразвуковой обработки МУНТ в течение 1 ч в дистиллированной воде. Для получения стабильной суспензии МУНТ в дистиллированную воду вводят поверхностно-активные вещества (додецилсульфат натрия или Triton X-100). В суспензию MУНТ при непрерывном перемешивании вводят порошок Al2O3. Полученную смесь обрабатывают ультразвуком в течение 1 ч, фильтруют и сушат при 110 °C в течение 12 ч. Окончательно смесь МУНТ-Al2O3 обрабатывают в планетарной мельнице. Отношение массы мелющих тел к массе порошка составляло примерно 1:30. Уплотнение смеси осуществляют сухим одноосным прессованием в стальной матрице при давлении 30 МПа с последующим холодным изостатическим прессованием при 300 МПа. После прессования образцы спекают в вакуумной печи при 10-6 Торр и температуре 1450 или 1500 °C в течение 1 ч. Горячее изостатическое прессование спеченных образцов проводят в графитовой печи при температуре 1520 °C в течение 1 ч выдержки в аргоне при давлении 200 МПа. Проводимость синтезированных образцов варьируется в диапазоне 1,91·10−4-1,39·10−3 См/см. Скорость утечки гелия при продолжительности испытания, равной 3 мин, составляет 0,1-0,3⋅10-12 л⋅Торр/с (0,13-0,40⋅10-12 мбар·л/с).

Способ технологически достаточно сложен. Для его осуществления необходима длительная стадия подготовки МУНТ с использованием дополнительных поверхностно-активных веществ. Способ включает большое количество технологических этапов, разброс параметров которых неизбежно приводит к сложности операционного контроля и снижает воспроизводимость характеристик керамических материалов. Ввиду необходимости использования дорогостоящего оборудования, способ требует значительных энергетических затрат. Кроме того, отсутствие данных об уровне так называемых «длинных» утечек, которые могут быть выявлены после обработки потоком гелия в течение времени более 10 мин, не позволяют в полной мере судить о вакуумной герметичности полученных материалов.

Технической задачей заявленного изобретения является снижение его технологической сложности и энергозатрат при получении вакуумплотного слабопроводящего керамического материала.

Поставленная задача решается благодаря тому, что заявляемый вакуумплотный слабопроводящий керамический материал на основе оксида алюминия дополнительно содержит оксиды бария, железа (III) и лития при следующем соотношении компонентов, мас. %:

Al2O3 – 61,7;

BaO – 18,5;

Fe2O3 – 19,4;

Li2О – 0,4.

Поставленная задача решается также благодаря заявляемому способу получения вакуумплотного слабопроводящего керамического материала, включающему приготовление порошковой композиции, формовочной смеси из полученной порошковой композиции, формование из формовочной смеси керамических заготовок с последующей сушкой и высокотемпературной обработкой, в котором при приготовлении порошковой композиции используют вышеуказанный состав, механоактивацию состава осуществляют в центробежной планетарной мельнице, формовочную смесь получают путем смешивания порошковой композиции с дистиллированной водой, влажность формовочной смеси доводят до 9 %, формуют заготовки методом полусухого прессования при давлении 200 МПа, высушивают при температуре 200 °С до остаточной влажности не более 4 %, после сушки проводят термообработку заготовок при температуре 1600 °C в течение не менее 2 часов в воздушной среде.

Существенными отличительными признаками заявляемого технического решения являются:

- состав на основе оксида алюминия дополнительно содержит оксиды бария, железа (III) и лития при следующем соотношении компонентов, мас.%: Al2O3 – 61,7; BaO – 18,5; Fe2O3 –19,4; Li2О – 0,4;

- при приготовлении порошковой композиции используют вышеуказанный состав;

- формовочную смесь получают путем смешивания порошковой композиции с дистиллированной водой, влажность формовочной смеси доводят до 9 %;

- формуют заготовки методом полусухого прессования при давлении 200 МПа;

- высушивают заготовки при температуре 200 °С до остаточной влажности не более 4 %;

- после сушки проводят термообработку заготовок при температуре 1600 °C в течение не менее 2 часов в воздушной среде.

Совокупность существенных отличительных признаков соответствует критерию «новизна» и позволяет решить поставленную задачу.

Указанный состав не известен в современном уровне техники.

Пример конкретного получения.

Порошковую композицию получают методом совместной механоактивации оксидов алюминия, бария, железа (III) и лития при следующем соотношении, мас.%: Al2O3 – 61,7; BaO – 18,5; Fe2O3 –19,4; Li2О – 0,4 в центробежной планетарной мельнице при 60g и времени механической обработки 1 минута, при этом загрузка в барабан обрабатываемой смеси составляет 100 г, а загрузка мелющих тел (стальные шары диаметром 6 и 10 мм) – 1800 г. Оксиды должны быть классификации не ниже «химически чистый». Готовая порошковая композиция представляет собой гомогенный продукт красно-коричневого цвета с насыпной плотностью 1,3 г/см3 и влажностью не более 4 %.

Приготовление формовочной смеси осуществляют смешением до гомогенного состояния в смесителе полученной порошковой композиции с дистиллированной водой. Влажность формовочной смеси доводят до 9 %.

Заготовки формуют методом полусухого прессования при давлении 200 МПа. Заявленные экспериментально подобранные технологические параметры полусухого прессования обусловлены необходимостью получения вакуумплотной керамики. Снижение влажности формовочной смеси ниже 9 % и давления прессования ниже 200 МПа приводит к увеличению пористости, неравномерности усадки при последующей высокотемпературной обработке и, как следствие, неоднородности по плотности в объеме керамического материала. Увеличение давления прессования выше заявляемого предела 200 МПа приводит к образованию трещин в объеме заготовки и к потери вакуумной плотности материала.

Высушивают заготовки при температуре 200 °С до остаточной влажности не более 4 %. После сушки заготовки помещают в емкость для обжига и засыпают термостойким материалом – плавленым электрокорундом – для предупреждения деформации образцов в процессе высокотемпературной термообработки. Термообработку заготовок проводят в воздушной среде по режиму: нагревание со скоростью 200 °C /ч, выдержка при 1600 °С в течение 2 ч и последующее охлаждение со скоростью 100 °C/ч до нормальной температуры. При изменении технологических параметров термообработки также наблюдается увеличение пористости, отсутствие вакуумной плотности, снижение прочности керамического материала.

Сравнительные характеристики заявляемого изобретения и прототипа представлены в таблице.

По сравнению с прототипом предлагаемое изобретение обладает преимуществами с точки зрения производительности процесса: отсутствие в технологическом процессе большого количества этапов упрощает операционный контроль; для осуществления изобретения отсутствует необходимость применения дорогостоящего оборудования, такого как высокотемпературная вакуумная печь, пресс горячего изостатического прессования.

Заявляемый керамический материал по характеристикам не уступает материалу, предложенному в прототипе.

Технический результат – снижение технологической сложности способа и его энергозатрат. Готовый керамический материал обладает удельной электрической проводимостью 1,50·10−7-1,05·10−4 См/см и скоростью утечки гелия при продолжительности испытания, равной 30 мин, < 5·10-10 мбар·л/с.

Таблица

Изобретение Состав, мас.% Свойства продолжительность измерения скорости утечки гелия, мин
Al2O3 BaO Fe2O3 Li2О МУНТ кажущаяся плотность, г/см3 предел прочности при сжатии, МПа удельная электрическая проводимость, См/см скорость утечки гелия, мбар·л/с
Заявляемое 61,7 18,5 19,4 0,4 - 3,75 597,0 1,50·10−7-1,05·10−4 * < 5·10-10 30
Прототип 99,65 - - - 0,35 3,59-3,83 - 1,91·10−4-1,39·10−3 0,13-0,40⋅10-12 3

*измерения проводили в диапазоне 100-300 °С

1. Вакуумплотный слабопроводящий керамический материал на основе оксида алюминия, отличающийся тем, что дополнительно содержит оксиды бария, железа (III) и лития при следующем соотношении компонентов, мас. %:

Al2O3 – 61,7;

BaO – 18,5;

Fe2O3 – 19,4;

Li2О – 0,4.

2. Способ получения вакуумплотного слабопроводящего керамического материала, включающий приготовление порошковой композиции, формовочной смеси из полученной порошковой композиции, формование из неё керамических заготовок с последующей сушкой и высокотемпературной обработкой, отличающийся тем, что при приготовлении порошковой композиции используют состав по п.1, механоактивацию состава осуществляют в центробежной планетарной мельнице, формовочную смесь получают путём смешивания порошковой композиции с дистиллированной водой, влажность формовочной смеси доводят до 9 %, формуют заготовки методом полусухого прессования при давлении 200 МПа, высушивают при температуре 200°С до остаточной влажности не более 4 %, после сушки проводят термообработку заготовок при температуре 1600°C в течение не менее 2 ч в воздушной среде.



 

Похожие патенты:
Изобретение относится к способу получения композиционного материала на основе алюмосиликатного связующего. Композиционный материал устойчив при высоких температурах (до 1000°С) и может найти применение в производстве авиационной техники, строительной и других отраслях промышленности.

Изобретение относится к способам получения керамических композитов на основе ортофосфата лантана (LaPO4-Al2O3, LаРO4-Y2O3, LaPO4-ZrO2) из наноразмерных порошков-прекурсоров. Обеспечивается получение композитной керамики с повышенной микротвердостью, низкой пористостью и высокой химической стойкостью, что позволяет использовать ее для изготовления конструктивных элементов в энергетических установках, в частности, в качестве тепловых экранов в высокотемпературных микротурбогенераторных установках для малой энергетики, а также в качестве матриц для иммобилизации высокоактивных отходов (ВАО) ядерной энергетики.

Настоящее изобретение относится к получению полых углеродных волокон (УВ) для изготовления капилляров, мембран, фильтров, разделителей в отсеках батарей и композиционных материалов, используемых при работе в агрессивных средах и при повышенной температуре рабочей зоны. В соответствии с заявленным способом получения полых углеродных волокон в нефтяной изотропный пек вводят 0,6-1,2 мас.% сверхдлинных углеродных нанотрубок, нагревают и формуют углеродное волокно, окисляют на воздухе при температуре 200-300°С с получением на поверхности неплавкой корочки за счёт процесса окислительной сшивки и карбонизируют путем нагрева в инертной среде азота, аргона или гелия при температуре 2200°С.
Изобретение относится к области производства высокотемпературных керамических изделий. Способ получения высокотемпературной керамики на основе оксида иттрия включает смешивание частиц оксида иттрия со связующим, формование изделий, сушку и отжиг.
Изобретение относится к технологии получения высокотемпературных керамических материалов теплозащитного и теплоизоляционного назначения. Способ получения волокнистого высокотемпературного теплозащитного материала включает диспергирование тугоплавкого волокна в две стадии с получения однородной водной пасты-полуфабриката, получение сырой заготовки путем заполнения формы, сушку и обжиг полученной заготовки.

Изобретение относится к производству алюмосиликатных материалов, предназначенных для использования в качестве расклинивающих агентов (пропантов) при добыче нефти, газа и воды с целью повышения эффективности отдачи скважин с применением технологии гидравлического разрыва пласта (ГРП). Техническим результатом изобретения является упрощение состава шихты до содержания в ней относительно дешевых компонентов для производства легковесных высокопрочных алюмосиликатных пропантов, а также разработка способа получения указанных изделий с высокими эксплуатационными характеристиками.

Изобретение относится к области разработки и производства углерод-углеродных композиционных материалов (УУКМ) на основе углеродной матрицы, сформированной из каменноугольных пеков в процессе карбонизации и последующих высокотемпературных обработок, и армирующих каркасов из углеродного волокна. Технический результат изобретения - исключение искажений формы и армирующей структуры заготовки, снижение энерго- и трудозатрат, а также повышение стабильности микро- и макроструктуры УУКМ, плотности и повышение физико-механических свойств УУКМ.

Изобретение относится к химической технологии получения реактивного альфа-оксида алюминия (α-Al2O3), который используют как высокодисперсный компонент при производстве биосовместимой, конструкционной и технической корундовой керамики, как компонент матричных систем в технологии низкоцементных огнеупорных литьевых масс, а также в качестве катализатора, адсорбента, абразивного материала.

Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения, которые могут быть использованы при создании полифазных композитов на основе Mg-гидроксилапатита и полимерной матрицы, при заполнении костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии.

Изобретение относится к способам получения сверхтвердых керамических материалов, а именно к способам получения керамических материалов на основе AlMgB14, и может быть использовано для изготовления конструкционных материалов и мишеней для магнетронного распыления покрытий, повышающих износостойкость режущих инструментов, деталей машин (валов, подшипников, шестерней), турбин, насосного оборудования и других износостойких, химически инертных деталей.
Изобретение относится к технологии получения корундового керамического материала конструкционного назначения, предназначенного для эксплуатации в условиях воздействия высоких механических и тепловых нагрузок, абразивного износа и агрессивных сред. Способ получения конструкционной керамики на основе оксида алюминия включает приготовление пресс-порошка из смеси корундового порошка с содержанием частиц размером до 2,5 мкм в количестве не менее 50 мас.%, спекающей добавки из смеси порошков алюмомагниевой шпинели и муллита в массовом соотношении 1:(2-5) в количестве 4,0-9,0 % от массы сухих компонентов, и технологической связки в виде 0,5-5,0 % водного раствора синтамида в количестве 5,0-15,0 мас.% сверх массы сухих компонентов.
Наверх