Патенты автора Поздняков Максим Александрович (RU)

Изобретение относится к области получения термостабильных полимеров, в частности к способу получения порошка 1,4-бис(4-феноксибензоил)бензола (1,4-ЭККЭ), включающему смешение дихлорангидрида терефталевой кислоты (ТФХ) и дифенилового эфира (ДФЭ) в среде нитробензола с получением реакционного раствора; добавление к реакционному раствору кислоты Льюиса в качестве катализатора, причем указанный катализатор добавляют при температуре от 6 до 15 °С, с получением реакционной смеси; доведение температуры реакционной смеси до температуры проведения реакции от 6 до 40 °С; выдерживание реакционной смеси при температуре проведения реакции с получением продуктовой смеси, содержащей 1,4-ЭККЭ; выделение сырца порошка 1,4-ЭККЭ путем дезактивации реакционной смеси, содержащей 1,4-ЭККЭ, с последующим фильтрованием; сушку полученного сырца порошка 1,4-ЭККЭ до достижения содержания нитробензола в полученном порошке 1,4-ЭККЭ менее 2,5 масс.%, при этом чистота нитробензола должна быть такой, что обеспечивается значение показателя преломления, измеренного в соответствии с ГОСТ 18995.2-73, от 1,5540 до 1,5640 при 20 °С. Изобретение также относится к получению полиэфиркетонкетона (ПЭКК), значение характеристической вязкости раствора которого в концентрированной H2SO4 составляет 1,02±0,05 дл/г и который характеризуется минимальным количеством структурных дефектов макромолекулярной цепи, со временем приводящих к росту вязкости расплава перерабатываемого полимера. Изобретение раскрывает способ получения ПЭКК через получение 1,4-бис(4-феноксибензоил)бензола (1,4-ЭККЭ) в качестве промежуточного соединения в виде порошка, а также к способу получения порошка указанного промежуточного соединения 1,4-ЭККЭ. Порошок 1,4-ЭККЭ характеризуется гранулометрическим составом, включающим не менее 80 масс.% частиц, размеры которых составляют от 10 до 40 мкм, и суммарным содержанием фракций с размером частиц до 10 мкм и более 40 мкм, не превышающим 20 масс.%. 3 н. и 30 з.п. ф-лы, 1 ил., 13 табл., 13 пр.

Изобретение относится к способу синтеза полиарилэфиркетонов (ПЭКК), которые находят своё применение в качестве конструкционных материалов. Предлагаемый способ включает следующие стадии: a) получение 1,3-бис(4-феноксибензоил)бензола (1,3-ЭККЭ); b) смешение дихлорангидрида терефталевой кислоты (ТФХ) и бензоилхлорида (БХ) с полученным на стадии (a) 1,3-ЭККЭ в апротонном растворителе с получением реакционного раствора, где содержание воды в апротонном растворителе составляет от 1 до 100 ч./млн; c) добавление к реакционному раствору кислоты Льюиса в качестве катализатора, где катализатор добавляют при температуре от -30 до 10°C, с получением реакционной смеси; d) нагрев реакционной смеси, образованной на стадии (c), до температуры проведения реакции; e) выдерживание реакционной смеси, образованной на стадии (с), с получением продуктовой смеси, содержащей ПЭКК; f) выделение твердого ПЭКК путем последовательной отмывки в водном растворе неорганической кислоты; g) удаление остаточного содержания неорганической кислоты в водном растворе нейтрализующего агента с последующим фильтрованием; h) очистку полученного твердого ПЭКК путем отмывки с последующим фильтрованием с получением сырого ПЭКК; i) сушку полученного сырого ПЭКК с получением целевого ПЭКК с характеристической вязкостью раствора в концентрированной H2SO4 1,02±0,05 дл/г. При этом способ получения 1,3-ЭККЭ включает: a) смешение дихлорангидрида изофталевой кислоты (ИФХ) и дифенилового эфира (ДФЭ) с апротонным растворителем с получением реакционного раствора, где содержание воды в апротонном растворителе составляет от 1 до 100 ч./млн; b) добавление к реакционному раствору кислоты Льюиса в качестве катализатора, где катализатор добавляют при температуре от -30 до 10°C с получением реакционной смеси; c) нагрев реакционной смеси до температуры проведения реакции от 10 до 40°C; d) выдерживание реакционной смеси при температуре проведения реакции с получением продуктовой смеси, содержащей 1,3-ЭККЭ; e) выделение сырца 1,3-ЭККЭ путем дезактивации, содержащей 1,3-ЭККЭ продуктовой смеси протонным растворителем; f) очистку сырца 1,3-ЭККЭ путем перекристаллизации с последующим фильтрованием; сушку полученного твердого 1,3-ЭККЭ. Технический результат заключается в получении ПЭКК с лучшей перерабатываемостью и сниженным количеством ксантогидрольных групп, характеристическая вязкость раствора которого в концентрированной серной кислоте составляет от 0,97 до 1,07 см3/г. При этом комплексная динамическая вязкость расплава полимера изменяется незначительно в течение длительного времени (до 45 мин) и составляет от 500 до 1750 Па⋅с. 2 н. и 33 з.п. ф-лы, 3 ил., 1 табл., 10 пр.

Изобретение относится к области получения термостабильных полимеров. В частности, изобретение относится к области получения полиэфиркетонкетона (ПЭКК), значение характеристической вязкости раствора которого в концентрированной H2SO4 составляет 1,02±0,05 дл/г и который характеризуется минимальным количеством структурных дефектов макромолекулярной цепи, со временем приводящих к росту вязкости расплава перерабатываемого полимера. Изобретение раскрывает способ получения ПЭКК через получение в качестве промежуточного соединения комплекса 1,3-бис(4-феноксибензоил)бензола (1,3-ЭККЭ) с кислотой Льюиса, значение мутности раствора которого составляет от 0 до 3 NTU. Полученный комплекс 1,3-бис(4-феноксибензоил)бензол - кислота Льюиса используют без дополнительной стадии предварительной очистки и выделения в указанном способе получения ПЭКК. Также раскрывается способ получения указанного промежуточного комплекса 1,3-ЭККЭ - кислота Льюиса. 2 н. и 30 з.п. ф-лы, 1 ил., 9 пр.

Изобретение относится к области химической промышленности, в частности к способу получения концентрированного раствора глиоксалевой кислоты (ГК) из продуктов окисления глиоксаля (ГО), которая широко применяется в качестве реагента для получения лекарственных препаратов (аллантоин, атенолол), ванилина, глифосата. Способ включает стадию окисления водного раствора глиоксаля, обработку смеси продуктов окисления глиоксаля проводят оксидом магния до рН 7-8 для образования смеси растворимого глиоксалата магния и малорастворимого осадка оксалата магния с последующей его фильтрацией и добавлением при перемешивании к фильтрату раствора хлорида кальция в количестве 0,5-1,0 моль на каждый моль окисленного глиоксаля, фильтрацией образовавшегося осадка и дальнейшего получения целевой ГК путем добавления по каплям к суспензии глиоксилата кальция в воде раствора HF в количестве 2 моль на каждый моль глиоксилата кальция, с последующим фильтрованием и концентрированием раствора кислоты под вакуумом до получения 50 % раствора. 4 пр.

Изобретение относится к области химической промышленности, в частности к способу выделения глиоксалевой кислоты (ГК) из продуктов окисления глиоксаля (ГО), которая применяется в органическом синтезе, например, является исходным продуктом для получения ванилина, аллантоина и биоразлагаемых полимеров. Способ разделения глиоксалевой кислоты из смеси продуктов окисления глиоксаля, содержащих щавелевую и глиоксалевую кислоты, включающий переработку осадка глиоксалата кальция в глиоксалевую кислоту путем добавления раствора щавелевой кислоты с дальнейшей фильтрацией образовавшегося раствора глиоксалевой кислоты и его концентрирование. Обработку данной смеси производят оксидом, гидроксидом или карбонатом магния до рН 5-8 для образования смеси растворимого глиоксалата магния и малорастворимого осадка оксалата магния с последующей его фильтрацией и добавлением при перемешивании к фильтрату раствора нитрата, хлорида, бромида или иодида кальция в количестве 0,5-1,0 моль на каждый моль окисленного глиоксаля. 4 пр.

Изобретение относится к химической промышленности, в частности к способу выделения гликолевой кислоты, которая широко применяется в косметологии, нефтегазовой, кожевенной отраслях промышленности, а также используется в синтезе биоразлагаемых полимеров и сополимеров, например, является исходным веществом для получения полигликолида и сополимера лактида и гликолида. Способ выделения гликолевой кислоты из смеси продуктов диспропорционирования глиоксаля включает обработку такой смеси соединениями Ca(An)2, где An = Cl, Br, I, NO3, CH3COO, используя их в виде растворов или твердых веществ из расчета 0,45-0,5 моль Ca(An)2 на каждый моль использованного глиоксаля для образования осадка малорастворимого гликолята кальция, который фильтруют, сушат и определяют содержание кальциевой соли гликолевой кислоты в этом осадке по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией, после чего этот осадок в твердом виде добавляют к раствору щавелевой кислоты, либо к водной суспензии этого осадка добавляют раствор щавелевой кислоты при перемешивании с последующей фильтрацией и концентрированием фильтрата, при этом щавелевую кислоту в обоих случаях берут в количестве 0,9–1,0 моль на каждый моль гликолята кальция, содержащегося в смеси, а её раствор имеет температуру 20-80°С. Предлагаемый способ позволяет получать целевой продукт с высокими выходом и чистотой. 2 ил., 5 пр.

Изобретение относится к химической промышленности, в частности к способу выделения глиоксалевой кислоты (ГК), которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина, аллантоина и биоразлагаемых полимеров. Способ выделения глиоксалевой кислоты из смеси продуктов окисления глиоксаля, содержащих щавелевую и глиоксалевую кислоты, включает обработку данной смеси оксидом, гидроксидом или карбонатом кальция из расчета 0,45-0,5 моль оксида, гидроксида или карбоната кальция на каждый моль протонов, содержащихся в этой смеси и определенных титрованием на общую кислотность или при контроле рН среды до значений 4-7 для образования смеси малорастворимых осадков кальциевых солей глиоксалевой и щавелевой кислот, с последующей фильтрацией, сушкой и определением содержания кальциевой соли глиоксалевой кислоты в этой смеси по количеству катионов кальция комплексонометрическим титрованием или атомно-эмиссионной спектроскопией. После чего осуществляют добавление смеси к раствору щавелевой кислоты при 20-80°С и перемешивают с последующей фильтрацией и концентрированием фильтрата, при этом щавелевую кислоту берут в количестве 0,9-1,0 моль на каждый моль глиоксалата кальция, содержащегося в смеси. Способ позволяет выделять глиоксалевую кислоту из продуктов окисления глиоксаля через смесь кальциевых солей глиоксалевой и щавелевой кислот без использования специфического оборудования и ионообменных смол. 4 пр.

Изобретение относится к химической промышленности, в частности к способу получения натриевой соли глиоксалевой кислоты, которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина. Способ получения натриевой соли глиоксалевой кислоты из продуктов окисления глиоксаля включает обработку продуктов реакции при контроле pH среды соединениями кальция: оксидом, гидроксидом или карбонатом до рН 5-6 для образования смеси малорастворимых осадков кальциевых солей глиоксалевой и щавелевой кислот, которые фильтруют, сушат, после чего определяют состав смеси и взмучивают ее в воде из расчета 1 г смеси солей на 10-30 мл воды с добавлением ортофосфата, оксалата или карбоната натрия в виде раствора или твердых солей с последующей фильтрацией, упариванием раствора и кристаллизацией натриевой соли, при этом ортофосфат, оксалат или карбонат натрия берут в количестве 0,9-1,0 моль на каждый моль глиоксалата кальция, содержащегося в смеси. Способ позволяет применять доступные реагенты с целью получения продукта с высокими выходом и чистотой. 2 ил., 1 табл., 3 пр.

 


Наверх