Патенты автора Тихонов Борис Борисович (RU)

Изобретение относится к химической промышленности, а именно, к области производства гетерогенных катализаторов синтеза Фишера-Тропша, и может быть применено на предприятиях химической промышленности для получения жидких углеводородов. Катализатор синтеза Фишера-Тропша содержит носитель, железо в качестве главного компонента, рутений в качестве активатора гидрогенизации, при этом носителем является сверхсшитый полистирол, общее содержание железа и соединений железа в катализаторе составляет 0,94-2,98 мас.%, общее содержание рутения и соединений рутения в катализаторе составляет 0,44-1,44 мас.%, а содержание сверхсшитого полистирола - 96-98,2 мас.%. Способ получения катализатора синтеза Фишера-Тропша включает приготовление раствора соли железа и нанесение его на носитель, при этом в качестве раствора соли железа используют раствор, содержащий 0,07-0,21 г Fe(NO3)3·9H2O, 0,01-0,03 г RuOHCl3·2H2O и 0,09-0,11 г NaHCO3 в 15 мл дистиллированной воды, обработку носителя раствором соли железа проводят в гидротермальных условиях в течение 14-16 минут при давлении азота 5,9-6,1 МПа, температуре 195-205°С и перемешивании со скоростью 450-550 об/мин, далее смесь охлаждают до температуры 20-30°С, фильтруют, промывают 9,5-10,5 мл дистиллированной воды, сушат на воздухе при температуре 100-110°С в течение 3,5-4,5 часов и подвергают восстановлению в трубчатой печи при температуре 295-305°С в среде водорода с расходом 10-15 мл/мин в течение 3,5-4,5 часов, при этом используют сверхсшитый полистирол с размером гранул 440-460 мкм, степенью сшивки 190-210%, площадью внутренней поверхности 1300-1500 м2/г, узким распределением пор с максимумом 4,5 нм, с удельным объемом пор 0,8-1,0 см3/г, содержанием мезопор диаметром 20-50 - не менее 30%, диаметром 60-80 - не менее 10%, диаметром 200-800 - не менее 20%. Техническим результатом изобретения является повышение активности, стабильности, селективности по углеводородам С5-С14 катализатора в синтезе Фишера-Тропша за счет использования твердого носителя с большой площадью поверхности, формирования высокодисперсных равномерно распределенных частиц активной фазы, отсутствия в составе катализатора соединений серы, хлора, кремния и азота. 2 н.п. ф-лы, 3 табл., 30 пр.

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений (в том числе производных фенолов), и может быть применено на предприятиях различных отраслей промышленности для проведения реакций окисления, а также для каталитической очистки сточных вод от токсичных органических загрязнителей. Гетерогенный катализатор жидкофазного окисления органических соединений содержит носитель, модифицированный 3-аминопропилтриэтоксисиланом, глутаровый диальдегид в качестве сшивающего агента и пероксидазу корня хрена в качестве активного компонента, в котором носителем являются магнитные наночастицы Fe3O4, модифицированные SiO2, при следующем соотношении компонентов, % мас.: Fe3O4 - 34,2÷34,6; SiO2 - 41,0÷41,4; 3-аминопропилтриэтоксисилан - 18,3÷18,8; глутаровый диальдегид - 3,8÷4,0; пероксидаза хрена - 1,9÷2,0. Способ получения гетерогенного катализатора жидкофазного окисления органических соединений включает взаимодействие фермент содержащего раствора с модифицированным для получения альдегидных групп на поверхности носителем, при этом в качестве носителя используют магнитные наночастицы Fe3O4. Модификация носителя включает смешивание его с SiO2, суспендирование полученного порошка в растворе 3-аминопропилтриэтоксисилана, добавление к смеси раствора глутарового диальдегида, раствора пероксидазы хрена, перемешивание, промывку дистиллированной водой и высушивание при комнатной температуре до постоянной массы. Техническим результатом изобретения является повышение активности, селективности, операционной стабильности гетерогенного катализатора в реакции жидкофазного окисления органических соединений перекисью водорода и его способности к отделению от реакционной среды за счет использования твердого носителя с большой площадью поверхности, высокореакционноспособными аминогруппами на поверхности и магнитными свойствами. 2 н.п. ф-лы, 3 табл., 33 пр.
Изобретение относится к химической промышленности, а именно к производству гетерогенных катализаторов процесса жидкофазного синтеза метанола, и может быть применено на предприятиях химической промышленности для получения метанола, который используется в качестве растворителя, экстрагента и сырья для синтеза формальдегида, сложных эфиров органических и неорганических кислот и добавок к топливу. Хромсодержащий катализатор жидкофазного синтеза метанола содержит сверхсшитый полистирол в качестве носителя и активный металл. Согласно изобретению в качестве активного металла используется хром, при этом содержание хрома в катализаторе составляет от 4 до 6 мас.%, а содержание сверхсшитого полистирола - 94÷96 мас.%. Используют сверхсшитый полистирол с площадью внутренней поверхности 950÷1050 м2/г. Способ получения хромсодержащего катализатора жидкофазного синтеза метанола включает обработку сверхсшитого полистирола раствором соли активного металла в тетрагидрофуране, дистиллированной воде и метаноле, приготовленном под током азота, высушивание, продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин, продувку водородом с расходом 30±5 мл/мин в течение 30±5 мин, восстановление водородом, охлаждение до комнатной температуры и продувку азотом с расходом 30±5 мл/мин в течение 30±5 мин. Согласно изобретению в качестве раствора соли активного металла используют раствор ацетата хрома концентрацией 3,6÷3,7 мас.%, обработку носителя раствором ацетата хрома осуществляют сначала смешиванием в течение 10±0,5 мин, далее - с использованием ультразвука с частотой 60±0,5 кГц, мощностью 75±1 Вт в течение 2±0,1 мин, высушивание проводится при 105±5°C в течение 1±0,1 ч, а восстановление водородом проводится при 350±10°С с расходом 10±1 мл/мин в течение 3±0,1 ч. Технический результат изобретения – повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного синтеза метанола. 2 н. и 1 з.п. ф-лы, 26 пр.
Изобретение относится к области биотехнологии, химической и пищевой промышленности, а именно к способу комплексной переработки продуктов жизнедеятельности Galleria mellonella, включающему экстракцию меланиновых веществ раствором NaOH, фильтрование, осаждение меланиновых веществ путем добавления раствора соляной кислоты, отделение полученного осадка от раствора центрифугированием, промывку осадка дистиллированной водой, замораживание осадка и сушку образовавшегося осадка, причем способ дополнительно содержит экстракцию продуктов жизнедеятельности Galleria mellonella гексаном, отделение гексана от шрота и перекачивание его в испаритель, упаривание гексана, осветление воска серной кислотой, сливание воска в формы, при этом экстракцию воска гексаном осуществляют при температуре не более 100±5°С в течение 60±5 минут, упаривание гексана производят в течение часа при температуре не более 100±5°С. Технический результат предлагаемого изобретения заключается в расширении сырьевой и технологической базы получения меланина и воска; повышении экологической безопасности перерабатывающих комплексов за счет безотходной технологии переработки продуктов жизнедеятельности большой пчелиной моли, включающей получение воска, меланина и удобрения; снижении себестоимости конечных продуктов. 13 пр.
Изобретение относится к области производства гетерогенных катализаторов для процессов жидкофазного синтеза метанола. Катализатор жидкофазного синтеза метанола содержит носитель и цинк в качестве активного компонента. Согласно изобретению, в качестве носителя используют сверхсшитый полистирол со степенью сшивки 195÷205%, при этом содержание цинка в катализаторе составляет от 2 до 4 масс.%, а содержание сверхсшитого полистирола - 96÷98 масс.%. Используют сверхсшитый полистирол с функциональными третичными аминогруппами, размером частиц 5-7 мкм, обменной емкостью 0,5 моль/л, влажностью 55÷62 %, степенью набухания ±5%, относительной плотностью 1,04 г/мл, площадью внутренней поверхности 900÷1100 м2/г и размером гранул 5÷7 мкм. Способ получения катализатора жидкофазного синтеза метанола включает обработку носителя раствором соли цинка, высушивание в течение 1 часа, промывку дистиллированной водой, высушивание, восстановление водородом в течение 2 часов. Согласно изобретению, в качестве раствора соли цинка используют раствор ацетата цинка концентрацией 2,8÷2,9 % масс. в тетрагидрофуране, дистиллированной воде и метаноле, приготовленный под током азота, обработку носителя раствором ацетата цинка осуществляют в течение 10±0,5 минут, после чего катализатор сушат при 75±5°C в течение 1±0,05 часа, промывают дистиллированной водой с pH=6,4÷7,0, снова сушат при 75±5°C в течение 1±0,05 часа, помещают в трубчатую печь, продувают азотом с расходом 30±5 мл/мин в течение 30±5 минут, продувают водородом с расходом 30±5 мл/мин в течение 30±5 минут, восстанавливают водородом при 300±10°С с расходом 30±5 мл/мин в течение 2±0,1 часа, охлаждают до комнатной температуры и продувают азотом с расходом 30±5 мл/мин в течение 30±5 минут. Сверхсшитый полистирол предварительно обрабатывают ацетоном, промывают дистиллированной водой и высушивают под вакуумом в течение 24 часов. Технический результат изобретения - повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного синтеза метанола за счет использования инертного полимерного носителя с большой площадью поверхности и увеличения доступности активного металла (цинка). 2 н. и 2 з.п. ф-лы, 23 пр.

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного гидрирования глюкозы в сорбит, и может быть применено на предприятиях пищевой, фармацевтической и энергетической промышленности для получения пищевых подсластителей, вспомогательных компонентов лекарственных препаратов и антивспенивающей добавки к топливам. Катализатор жидкофазного гидрирования глюкозы содержит носитель и никель в качестве активного компонента. Согласно изобретению в качестве носителя используют сверхсшитый полистирол со степенью сшивки 195÷205%, при этом содержание никеля в катализаторе составляет от 24 до 26 масс. %, а содержание сверхсшитого полистирола - 74÷76 масс. %. Способ получения катализатора включает обработку носителя раствором соли никеля, выпаривание и сушку полученного катализатора с дальнейшим его восстановлением водородом в течение 3 ч. Согласно изобретению в качестве носителя используют сверхсшитый полистирол, а в качестве раствора соли никеля используют раствор ацетата никеля концентрацией 0,8÷0,9 моль/л. Обработку носителя раствором ацетата никеля осуществляют при дополнительном одновременном ультразвуковом воздействии с частотой 37 кГц в течение 30 мин, после чего проводят выпаривание при температуре 70±5°С в течение 12±0,5 ч с повторным одновременным ультразвуковым воздействием с частотой 37 кГц, затем полученный катализатор сушат на воздухе при температуре 105±5°С в течение 12±0,5 ч и восстанавливают водородом при 300±10°С с расходом 10-15 мл/мин. Технический результат изобретения - повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного гидрирования глюкозы за счет использования инертного полимерного носителя с большой площадью поверхности и увеличения доступности активного металла (никеля). 2 н. и 2 з.п. ф-лы, 20 ил., 23 пр.

Изобретение относится к фармацевтической промышленности, а именно к способу получения меланиновых веществ, получаемых из отходов маслоэкстракционного производства - лузги подсолнечника. Способ получения меланиновых веществ из лузги подсолнечника, включающий измельчение лузги подсолнечника, экстракцию меланиновых веществ раствором NaOH, фильтрование, осаждение меланиновых веществ путем добавления раствора соляной кислоты и сушку образовавшегося осадка, при этом из измельченной лузги подсолнечника фракции 1÷3 мм экстракцию меланиновых веществ проводят 0,095÷0,105 н. раствором NaOH при соотношении массы лузги подсолнечника к массе экстрагента 1:35÷1:45 при дополнительном одновременном воздействии ультразвуком с частотой 37±1 кГц и интенсивностью 414±5 Вт/см2, при температуре 60±5°С и постоянном перемешивании в течение 25±5 минут, осаждение меланиновых веществ путем добавления концентрированной соляной кислоты в объемном соотношении к фильтрату 1:65÷1:75, отделение полученного осадка от раствора осуществляют центрифугированием при 6000±10 об/мин в течение 5±0,5 мин, далее осадок промывают дистиллированной водой и замораживают его при температуре -19±1°С, после чего лиофильно сушат. Вышеописанный способ позволяет увеличить эффективность процесса, повысить чистоту и устойчивость получаемых меланиновых веществ за счет снижения содержания в продукте побочных продуктов, снизить себестоимость конечного продукта, а также уменьшить энергозатраты. 1 табл., 29 пр.

Изобретение относится к области переработки углеродсодержащих отходов растительного происхождения и может применяться для генерации электрической и тепловой энергии и получения углеродных сорбентов. Способ переработки углеродсодержащих отходов растительного происхождения включает подачу сырья в вертикальный шнековый реактор пиролиза с помощью шнекового питателя, термическую переработку сырья при температуре 598-602°С в течение 2 секунд без доступа кислорода в реакторе, отвод летучих продуктов пиролиза, очистку летучих продуктов от угольной пыли с помощью циклона, термокаталитическую очистку летучих продуктов от смол в реакторе термокаталитической очистки при температуре 480-520°C, растворение легколетучих компонентов газообразных продуктов в промывной склянке и осушение газовой смеси в осушительной склянке, конденсацию и сбор жидких продуктов пиролиза, сбор несконденсированных газообразных продуктов пиролиза и выгрузку твердой фракции продуктов пиролиза. Изобретение обеспечивает увеличение КПД переработки исходного сырья и повышение качества жидких и газообразных продуктов. 3 з.п. ф-лы, 4 ил., 3 табл., 17 пр.

Изобретение относится к нефтехимической промышленности, а именно к области производства гетерогенных катализаторов процесса переработки нефтесодержащих отходов и тяжелых нефтяных остатков (мазута, гудрона, смолисто-асфальтеновой фракции нефти, битума, тяжелой нефти), содержащих цеолит, и может быть с успехом реализовано на предприятиях нефтехимической и нефтедобывающей промышленности для повышения глубины переработки нефти и получения высококачественных жидких и газообразных топливных продуктов. Катализатор термокаталитической переработки тяжелого и остаточного углеводородного сырья включает цеолит HZSM-5 и бентонитовую глину. Согласно изобретению катализатор получен смешением компонентов при следующем соотношении компонентов, мас.%: цеолит HZSM-5 30-40 бентонитовая глина 40-50 карбонат кальция 18-22 хлорид металла подгруппы железа 1.8-2.2 с последующим отжигом полученной смеси. Кроме того, в качестве хлорида металла подгруппы железа используют хлорид никеля, или железа, или кобальта. Технический результат изобретения - повышение активности и стабильности катализатора и селективности процесса в переработке тяжелого и остаточного углеводородного сырья, а также возможность регенерации и снижение потерь катализатора при производстве, хранении и применении. 1 з.п. ф-лы, 2 табл., 24 пр.
Изобретение относится к способам получения катализаторов и предназначено для получения полимерсодержащего катализатора реакции Сузуки на основе наночастиц палладия, импрегнированных в матрицу сверхсшитого полистирола методом пропитки по влагоемкости (импрегнации). Способ получения полимерсодержащего катализатора реакции Сузуки включает пропитку предварительно измельченного полимерного носителя - сверхсшитого полистирола раствором хлорметилцианистого палладия (CH3CN)2PdCl2 в тетрагидрофуране при температуре от 20°С до 40°C с последующей обработкой водным раствором NaOH. Согласно изобретению до восстановления катализатор сушат путем выпаривания при температуре от 68 до 72°С под вакуумом от 0,8 до 1,2⋅10-3 Па в течение от 4,5 до 5,5 часов, затем дополнительно восстанавливают катализатор водородом путем последовательной продувки катализатора сначала инертным газом, затем водородом и повторно инертным газом со скоростью газового потока от 95 до 105 см3/мин, после чего катализатор нагревают до температуры от 195 до 205°С и продувают водородом со скоростью потока от 95 до 105 см3/мин, затем нагрев прекращают и продувают инертным газом со скоростью потока от 45 до 55 см3/мин. При этом полимерный носитель - сверхсшитый полистирол предварительно промывают дистиллированной водой и ацетоном и сушат до постоянной массы. Техническим результатом является повышение каталитических свойств (активность, селективность, стабильность) катализатора за счет введения дополнительных стадий обработки носителя и активного компонента катализатора (наночастиц палладия). 1 з.п. ф-лы, 6 пр.

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений (в том числе, производных фенолов) и может быть применено на предприятиях различных отраслей промышленности для проведения реакций окисления, а также для каталитической очистки сточных вод от токсичных органических контаминантов. Гетерогенный катализатор жидкофазного окисления органических соединений содержит носитель, глутаровый диальдегид в качестве сшивающего агента и экстракт корня хрена (Armoracia Rusticana) в качестве активного компонента. Согласно изобретению в качестве носителя используют диоксид титана, модифицированный последовательно 0,095÷0,105 н. раствором соляной кислоты, 0,195÷0,205%-ным раствором хитозана в 0,0045÷0,0055 М растворе соляной кислоты и 4,95÷5,05%-ным раствором аминопропилтриэтоксисилана в 95,5÷96,5%-ном этаноле при следующем соотношении компонентов, % масс.: диоксид титана - 45÷55; хитозан - 7,5÷12,5; аминопропилтриэтоксисилан - 17,5÷22,5; сшивающий агент (глутаровый диальдегид) - 7,5÷12,5; активный компонент (экстракт корня хрена) - 7,5÷12,5. Технический результат - повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного окисления органических соединений перекисью водорода. 6 ил., 19 пр.

Изобретение относится к области переработки полимерных отходов. Осуществляют способ утилизации полимерных отходов методом низкотемпературного каталитического пиролиза, при этом осуществляют термическую переработку полимерных отходов в шнековом реакторе без доступа кислорода в присутствии катализатора на основе цеолита ZSM-5, способ отличается тем, что в качестве катализатора используют катализатор на основе оксида железа, импрегнированного в матрицу цеолита ZSM-5, переработку отходов проводят при температуре 498-502°С в течение 59-61 минут, при использовании 1-5% от массы сырья, при этом перерабатывают полимерные отходы крупностью не более 80 мм. Технический результат - снижение образования побочных смоляных компонентов, получение горючего газа, невысокая температура процесса термодеструкции. 2 табл., 1 ил.

Изобретение относится к способам регенерации насыщенного раствора поглотителя влаги - диэтиленгликоля, который используют в качестве абсорбента для извлечения водяных паров из газа в установках осушки природных и нефтяных газов. Способ регенерации насыщенного раствора поглотителя влаги, включающий вывод из абсорбера установки осушки природных и нефтяных газов насыщенного абсорбента и его обработку в две стадии, при этом обработку проводят при удельном потоке в надмембранном пространстве 3,7·103-3,9·103 л/(ч·м2), отличающийся тем, что на первой стадии процесс проводится с использованием 2 мембранных установок при 18-25°С, причем в первой мембранной установке происходит отделение ионов Са2+, а во второй - ионов Cl-, а вторую стадию процесса проводят с использованием 2 других мембранных установок при 50-55°С. Технический результат - повышение качества и эффективности регенерации абсорбента. Предлагаемый способ может быть широко использован для утилизации и регенерации отходов химической технологии, применяемой в нефте-, газодобывающей и перерабатывающей промышленности, так как он позволяет безотходно и экономично повторно использовать осушитель природных и нефтяных газов. 1 ил., 2 табл.

Изобретение относится к области получения удобрений на основе отходов переработки растительного сырья. Предложен способ биоконверсии отходов промышленного производства сапонинов из корня Saponaria Officinalis. Способ включает приготовление исходной смеси, загрузку смеси в биореактор и проведение биоконверсионного процесса с аэрацией смеси. Растительные отходы производства сапонинов подвергаются биоконверсии в составе смеси, содержащей торф и птичий помет, с соотношением компонентов торф:птичий помет: растительные отходы - (13%-25%):50%:(25%-50%). Процесс биоконверсии в первые 7 суток производится при температуре 37±2°C и 55±2°C - на 8-е сутки. Изобретение обеспечивает ускорение процесса биоконверсии растительных отходов и повышение его эффективности. 3 з.п. ф-лы, 7 табл., 5 пр.
Изобретение относится к фармацевтической промышленности, а именно к способу получения сапонинсодержащего экстракта. Способ получения сапонинсодержащего экстракта, включающий предварительное замачивание корней Saponaria officialis L. в дистиллированной воде, экстракцию под воздействием ультразвука, фильтрацию, при определенных условиях. Вышеописанный способ позволяет повысить качество целевого продукта и сократить время получения сапонинсодержащего экстракта из Saponaria officinalis L. 5 пр.

Изобретение относится к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений - фенолов, поверхностно-активных веществ - перекисью водорода и может быть применено для каталитической очистки сточных вод от фенольных соединений

Изобретение относится к производству кишечнорастворимых капсульных форм лекарственных препаратов, в частности к технологии создания оболочек капсул с улучшенными защитными свойствами

 


Наверх