Патенты автора Рябов Георгий Константинович (RU)

Изобретение относится к области машиностроения, в частности к устройству для управления роботом-манипулятором с силомоментной обратной связью, установленным на подвижной опоре в радиационно-защитной камере и способу управления посредством такого устройства. Устройство содержит рукоятку, кинематически связанную с механическими узлами, обеспечивающими раздельное и одновременное перемещение рукоятки по трем взаимно перпендикулярным направлениям и вращение вокруг трех взаимно перпендикулярных осей, и соединено с роботом-манипулятором через персональный компьютер, обеспечивающий его запуск и контроль. Механические узлы выполнены в виде двух продольных приводов по оси X, одного перпендикулярного привода по оси Y, своими концами расположенного на продольных приводах, и одного вертикального привода по оси Z, своим концом расположенного на перпендикулярном приводе. Продольные, перпендикулярный и вертикальный приводы снабжены шаговыми электродвигателями, а вертикальный привод посредством рычагов дополнительно соединен с тремя серводвигателями, обеспечивающими вращение рукоятки управления вокруг осей X, Y и Z. Изобретение обеспечивает расширение технических возможностей робота-манипулятора. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение предназначено для ориентирования и сборки пакета пластин ротора электродвигателя для использования его в дальнейших технологических операциях. Технический результат: упрощение конструкции, расширение технологических возможностей. Устройство для сборки пакета пластин ротора содержит основание с элементами для установки пакета пластин на валу, приспособление для скоса пазов пластин ротора. Элемент для установки пакета пластин на валу выполнен в виде Т-образной стойки, вал на котором набирается пакет пластин своим нижним концом установлен в сквозном отверстии основания и закреплен с помощью съемной вилки, а верхний конец вала оснащен шайбой, которая поджимает пакет пластин посредством винта, ввинченного в верхний конец вала. Приспособление для скоса пазов пластин ротора выполнено в виде корпуса, закрепленного на основании, в котором с помощью рукоятки перемещается подпружиненный фиксатор, входящий в пазы пластин, а сам фиксатор может быть выполнен прямым, по винтовой линии или наклонным к плоскости основания. Вал с собранным на нем пакетом пластин посредством съемной вилки освобождается из основания и может быть использован на дальнейших технологических операциях склеивания и сушки пакета пластин. 1 з.п. ф-лы, 3 ил.

Изобретение относится к технологии получения радионуклидов для ядерной медицины. Способ производства трихлорида лютеция-177 включает изготовление мишени путем растворения стартового материала оксида лютеция-176 в азотной кислоте при температуре 90°С, дозирования полученного материала в кварцевую ампулу, выпаривания материала из ампулы до сухого состояния при температуре 110°С, запайки кварцевой ампулы в вакууме и помещения ампулы в мишень, выполненную в виде алюминиевой капсулы, облучение мишени в реакторе в течение 10 эффективных суток, после облучения алюминиевую капсулу дезактивируют азотной кислотой концентрацией 6 моль/л в течение 10 мин, промывают дистиллированной водой, вскрывают, извлекают кварцевую ампулу, дезактивируют азотной кислотой концентрацией 4 моль/л в течение 40 мин при температуре 70°С, промывают дистиллированной водой и высушивают, измеряют уровень загрязнения поверхности кварцевой ампулы методом мазка, затем дезактивированную кварцевую ампулу помещают в защитный бокс, где производят повторную дезактивацию и повторно измеряют уровень загрязнения поверхности кварцевой ампулы, в случае если уровень загрязнения не превышает 185 Бк, кварцевую ампулу надрезают по окружности абразивным инструментом, промывают и вскрывают, затем сухой осадок лютеция-177 в кварцевой ампуле растворяют в соляной кислоте с концентрацией 0,1 моль/л, затем извлекают и дозируют во флаконы, упаковывают в контейнеры для транспортировки потребителю. Также предложена технологическая линия производства трихлорида лютеция-177, включающая ламинарный бокс, сварочный пост, реакторный комплекс, горячую камеру, радиационно-защитные боксы, лабораторию контроля качества готовой продукции и вытяжной шкаф. Изобретение обеспечивает упрощение технологического процесса получения прекурсора трихлорид лютеция-177 без носителя на стандартных реакторах. 2 н.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к способу производства трихлорида лютеция-177 и технологической линии производства трихлорида лютеция-177. Способ включает изготовление мишени, облучение мишени, вскрытие мишени после облучения и направление на радиохимическую переработку для получения прекурсора трихлорид лютеция-177. Технологическая линия производства трихлорида лютеция-177 включает технологическое оборудование, установленное в заданной последовательности, в ламинарном боксе, на сварочном посту, в реакторном комплексе, в горячей камере, в радиационно-защитном боксе №1, в радиационно-защитном боксе №2, в радиационно-защитном боксе №3, в лаборатории контроля качества готовой продукции, в вытяжном шкафу. Техническим результатом является упрощение технологического процесса получения прекурсора трихлорид лютеция-177 без носителя на стандартных реакторах. 2 н.п. ф-лы, 1 ил., 1 табл.

Группа изобретений относится к способу и устройству ультразвуковой очистки изделий и может быть использована для очистки закрытых радиационных источников (ЗРИ) в радиационно-защитной камере. Устройство содержит ванну овальной формы, заполненную технологическим раствором. В плоское дно ванны встроен ультразвуковой излучатель, нагреватели технологического раствора установлены и закреплены с наружной стороны дна на дополнительной пластине. Единичные очищаемые ЗРИ располагают в непроницаемый для жидкости емкости, опущенной в технологический раствор ванны, на который накладываются ультразвуковые колебания. Состав жидкости в емкости может отличаться от состава технологического раствора ванны. Технический результат: упрощение конструкции устройства ультразвуковой очистки ЗРИ и возможность его размещения в радиационно-защитной камере. 2 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к средствам герметизации корпусов закрытых радионуклидных источников ионизирующего излучения (ЗРИИИ). Установка герметизации закрытых радионуклидных источников ионизирующего излучения содержит радиационно-защитную камеру, вертикальный лазерный излучатель с системой фокусировки и систему позиционирования ЗРИИИ. Радиационно-защитная камера снабжена радиационно-защитным глухим корпусом с верхней и боковой стеклянными проходками. Система позиционирования ЗРИИИ оснащена механизмом горизонтального перемещения с выводом системы позиционирования ЗРИИИ из глухого корпуса в радиационно-защитную камеру, радиационно-защитная камера оснащена постом загрузки ЗРИИИ, двумя кассетами с заготовками ЗРИИИ и двумя кассетами с готовыми ЗРИИИ. Технический результат – повышение качества сварных швов при малых (0,05-0,2 мм) толщинах свариваемых элементов ЗРИИИ в радиационно-защитной камере и повышение защиты электронных и оптических компонентов системы фокусировки лазерного излучения от источников ионизирующего излучения. 1 з.п. ф-лы, 6 ил.

Изобретение относится к испытательным устройствам и предназначено для контроля в радиационно-защитной камере на прочность соединений испытательного образца: корпуса источника ионизирующего излучения с концевой деталью (тросиком). Машина содержит раму с расположенным в верхней её части захватом в виде зажимных губок для закрепления испытательного образца, каретку с двумя траверсами и двумя толкателями, передвигающуюся пневматическим приводом и с расположенным на одной траверсе цанговым захватом второго конца испытуемого образца. Рама испытательной машины закреплена в радиационно-защитной камере, а на нижней траверсе каретки закреплен датчик контроля усилия, который вторым концом соединен со штоком пневматического привода. Технический результат: возможность применения устройства в радиационно-защитной камере для контроля прочности соединений испытательного образца. 3 з.п. ф-лы, 4 ил.

Использование: для контроля сварных соединений мишени. Сущность изобретения заключается в том, что выполняют позиционирование мишени, её просвечивание рентгеновским источником излучения и контроль дефектов сварных швов, при этом просвечивание рентгеновским источником излучения сварных соединений мишени осуществляется в радиационно-защитной камере, а регистрацию дефектов сварных соединений осуществляют посредством радиографической пленки, расположенной в глухой трубе, соединенной открытым концом с помещением оператора, определение размеров обнаруженных дефектов сварного соединения производят путем измерения лупой измерительной изображения дефектов на пленке. Технический результат: обеспечение возможности контроля сварных соединений мишеней в условиях радиационно-защитной «горячей» камеры. 2 н. и 2 з.п. ф-лы, 2 ил.
Изобретение относится к строительным материалам и может быть использовано при изготовлении высокотемпературных теплоизоляционных изделий

Изобретение относится к области очистки оборотных и заборных вод, промышленных стоков, технологических жидкостей и может быть использовано на металлообрабатывающих предприятиях и в металлургии

Изобретение относится к области строительства, а именно к способам и устройствам изготовления теплоизоляционных изделий, и может быть использовано при изготовлении высокотемпературных теплоизоляционных изделий на основе диатомитового сырья
Изобретение относится к пищевой промышленности
Изобретение относится к составам для отделки бетонных и штукатурных поверхностей

Изобретение относится к области производства строительных материалов и может быть использовано для изготовления теплоизоляционного материала
Изобретение относится к строительным материалам, а также к области производства искусственных теплоизоляционных материалов

Изобретение относится к области металлургии и может быть использовано для переработки металлосодержащих шламов газоочисток плавильных печей

Изобретение относится к области строительства, а также к области производства теплоизоляционных материалов, и может быть использовано для обработки кирпичей из диатомита

 


Наверх