Патенты автора Гороховский Александр Владиленович (RU)

Изобретение относится к области модификации эпоксидных смол, используемых в качестве основы для производства пропиточных составов, клеев и лаковых покрытий. Предложен эпоксидный клей, включающий эпоксидиановую смолу, полиаминный отвердитель полиэтиленполиамин и в качестве модификаторов полые микрогранулы, представляющие собой микросферы диаметром 50-80 мкм, заполненные цианоакрилатным клеем, оболочка которых образована полимеризованным цианоакрилатным клеем. Технический результат - улучшение эксплуатационных характеристик эпоксидных клеев, а именно повышение ударо- и виброустойчивости и придание свойства самовосстановления при появлении микроразрывов и трещин, а также расширение ассортимента эпоксидных клеев и связующих на их основе. 1 табл.
Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к получению материалов для формирования функциональных покрытий, и может быть использовано при создании различных электронных приборов. В способе получения стабилизированной дисперсии субмикроразмерных порошков оксидных материалов, в котором порошок твердого раствора состава K1,46Ti8-хМхO16, где М – переходный металл, x = 0,3-0,7, имеет структуру голландита, в качестве дисперсионной среды используют низкокипящий одноатомный спирт, который на первом этапе «мокрого» помола берут в равных весовых долях с порошком твердого раствора по 10-20 весовых частей, а в качестве катионного поверхностно-активного вещества используют полидиметилдиалиламмония хлорид сахарозы. Изобретение позволяет получать дисперсию, обладающую высокой текучестью и высокой смачивающей способностью по отношению к токопроводящим оксидным покрытиям на основе оксида олова, а также стабильностью к расслаиванию. 1 табл.

Изобретение относится к химической, автомобильной, машиностроительной и текстильной промышленности и может быть использовано при изготовлении антифрикционных добавок к смазочным материалам для узлов трения качения и скольжения. Нанокомпозитный материал на основе титаната калия состоит из слоистых частиц титаната калия чешуйчатой формы субмикронного размера, декорированных наночастицами карбонатной формы слоистого гидроксида, содержащего медь, цинк и алюминий в мольном соотношении, соответствующем 1:1:1, причем избыток содержания хотя бы одного из указанных металлов над остальными не более 10%. Частицы титаната калия дополнительно модифицированы неионогенным поверхностно-активным веществом, в качестве которого взят оксиэтилированный алкилфенол. Изобретение позволяет улучшить трибологические свойства смазочных композиций, содержащих порошок титаната калия, а именно снизить коэффициент трения, увеличить износостойкость трущихся поверхностей, критическую нагрузку и нагрузку сваривания. 2 з.п. ф-лы, 4 ил.

Изобретение относится к смазочным составам и может быть использовано при обработке узлов трения машин и механизмов, в частности тяжело нагруженных узлов трения, таких как пара «колесо-рельс», для уменьшения шумового эффекта, возникающего, например, при торможении поезда, а также при торможении вагонов рельсовыми тормозами при маневрировании на сортировочных горках. Шумоподавляющая смазочная композиция для контактирующих стальных поверхностей узлов трения включает графит, оксид металла или смесь оксидов металлов с твердостью по шкале Мооса больше твердости стали контактирующих поверхностей, плакирующую добавку металла, имеющего твердость по шкале Мооса ниже твердости стали контактирующих поверхностей, модифицирующую антифрикционную добавку материала, состоящую из нано- и субмикроразмерных частиц, имеющих слоистую структуру, и углеводородную основу, при следующем соотношении компонентов, вес.%: графит 10-20, оксид металла или смесь оксидов металлов 15-25, плакирующая добавка 8-15, модифицирующая антифрикционная добавка 2-5, углеводородная основа остальное до 100%. Изобретение обеспечивает снижение общего уровня шума, создаваемого при контактировании стальных поверхностей узлов трения. 11 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к области микроэлектроники и может быть использовано в системах, генерирующих или накапливающих электрическую энергию (конденсаторы, суперконденсаторы, источники тока). Техническим результатом изобретения является повышение удельной электрической ёмкости электрода, сохраняющейся при многократном зарядно-разрядном циклировании, и, как следствие, увеличение удельной энергии, запасаемой электродом при его включении в электрическую схему в составе накопителя электрической энергии. Мультиканальный электрод включает подложку из инертного диэлектрического материала, имеющую сотовую структуру, образованную трубчатыми микроканалами, субмикронное токопроводящее покрытие из инертного металла, например, серебра, нанесенное на поверхность подложки и поверхность стенок микроканалов, активный слой суперионного проводника в виде нано- и субмикроразмерных частиц, и токосъемник, нанесенный на подложку. Технический результат достигается за счет того, что активный слой суперионного проводника нанесен непосредственно на токопроводящее покрытие стенок микроканалов и содержит частицы твердого раствора состава KxMyTi(8-y)O16, имеющего структуру голландита, где М - по меньшей мере один переходный металл. 5 ил., 1 табл

Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к композитным диэлектрикам, обладающим высокой диэлектрической проницаемостью при сохранении высокой эластичности. Диэлектрический эластомерный композиционный материал содержит пластифицированный полимерный материал и материал наполнителя, диспергированный в полимерном материале, при этом в качестве полимерного материала содержит поливинилбутираль, а в качестве наполнителя содержит порошок диэлектрика, имеющий химический состав K1.46Ti8-xFexO16, х=0,3-0,9, и структуру голландита с объемной долей частиц наполнителя от 10 до 30% и размером частиц не более 3 мкм. Изобретение позволяет получать композитный диэлектрик, характеризующийся высокими значениями параметров диэлектрической проницаемости и эластичности при невысоком содержании функционального наполнителя. 3 н. и 9 з.п. ф-лы.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для подключения параметрических датчиков различного типа (резистивных, индуктивных, емкостных, смешанного типа) к генератору сигнала и снятия информативных электрических сигналов для последующей обработки в различных информационно-измерительных телеметрических системах. Техническим результатом предлагаемого решения является расширение функциональных возможностей устройства для измерения полного сопротивления параметрических датчиков, повышение точности измерений за счет устранения влияния параметров соединительных проводников, ускорение процесса измерения и упрощение конструкции измерительного устройства за счет устранения согласующих цепей и процедуры их предварительной калибровки. Устройство для измерения полного сопротивления параметрических датчиков, включающее замкнутый контур, содержащий генератор сигнала синусоидальной формы, измерительный и опорный параметрические датчики, сигнальный процессор и два канала передачи сигналов с датчиков в сигнальный процессор, каждый из которых содержит последовательно соединенные инструментальный усилитель, формирователь сигналов и аналого-цифровой преобразователь, при этом параметрические датчики подключены ко входам инструментальных усилителей, а выходы аналого-цифровых преобразователей подключены к сигнальному процессору. При этом генератор сигнала выполнен в виде генератора синусоидального тока постоянной амплитуды и известной частоты. В качестве опорного датчика использован датчик, полное сопротивление которого неизвестно, при этом измерительный и опорный датчики включены непосредственно в замкнутый контур последовательно. Опорный датчик расположен около измерительного с обеспечением одинакового воздействия на оба датчика факторов окружающей среды, и воздействия измеряемой величины только на измерительный датчик. Сигнальный процессор выполнен с возможностью вычисления полного сопротивления опорного датчика параллельно с полным сопротивлением измерительного датчика. 4 з.п. ф-лы, 1 ил.

Изобретение относится к химической промышленности, в частности к утилизации отработанных гальванических растворов никелирования. Способ включает обработку электролита щелочным реагентом, при этом в качестве щелочного реагента используют титанат щелочного металла, имеющий слоистую структуру и вводимый в раствор постепенно при постоянном интенсивном перемешивании, затем отделяют осадок и сушат, а образовавшийся продукт нейтрализации в виде порошка используют в качестве катализатора окислительно-восстановительных процессов при комплексной очистке дымовых и выхлопных газов от оксидов азота и монооксида углерода. В других вариантах образовавшийся продукт нейтрализации в виде порошка используют в качестве фотокатализатора при очистке воды от загрязнений органическими соединениями или в качестве фотоактивного полупроводникового материала в системах фотовольтаики. Технический результат заключается в придании продукту утилизации высокотехнологичных функциональных свойств. 3 н. и 4 з.п. ф-лы, 5 табл., 4 пр., 1 ил.

Изобретение относится к электротехнике, а более конкретно к слоистым пленочным электродам для электролитических конденсаторов. Пленочный конденсатор содержит многослойный электрод, основа которого с развитой поверхностью через адгезионный металлизирующий нанослой скреплена с наноразмерным покрытием в форме, как минимум, двух слоев: функционального из титана и/или алюминия, который дополнительно наращивается посредством электрофореза из жидкой среды, и второй - диэлектрик, сформированный из оксидов алюминия и титана, который содержит в объеме и на границах разделов нанокластеры металла размером 0,5-50 нм, допируемые посредством электрических разрядов в жидкой среде, при этом поверхность диэлектрика конформно покрыта слоем электролита. В качестве основы использована ткань из нитей углерода или графена с пористостью выше 1000 м2/г, а толщина функционального слоя ее покрытия развита до 200-250 нм, в диэлектрическом поверхностном слое которого, сформированном окислением с образованием собственных оксидов, распределены допированием кластеры магнитных металлов ряда кобальт, никель, железо. Изобретение обеспечивает емкость пленочного конденсатора в 3-5 раз выше, чем по известным аналогам, при заметном упрощении процесса изготовления без трудоемких операций рифления поверхности основы с обязательным нанесением барьерного слоя. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области суперконденсаторов и может быть использовано в энергетических системах, функционирующих за счет запасаемой электрической энергии, в особенности солнечной энергетике, в качестве накопителей и автономных источников питания с управляемыми характеристиками заряда и разряда. Сущность изобретения: в суперконденсаторе, состоящем из подложки из диэлектрического материала, на которой последовательно расположены слой металла - первый электрод, сопряженный по границе со следующим слоем суперионного проводника, слой суперионного проводника, второй электрод из проводящего материала, который имеет сопряженную границу со слоем суперионного проводника, новым является то, что подложка выполнена в виде полого цилиндра, на поверхность которого нанесены последовательно первый электрод, слой сопряжения, активный слой суперионного проводника, второй электрод. В качестве суперионного проводника используется модифицированный полититанат калия, первый электрод выполнен в виде субмикронной пленки инертного металла, слои сопряжения и второго электрода состоят из нанопорошкового активного металла. Изобретение обеспечивает повышение удельной (в расчете на единицу мощности, объема и веса) емкости накапливаемой электрической энергии. 1 ил.

Использование: для осуществления детектирования и анализа газов и многокомпонентных газовых смесей. Сущность изобретения заключается в том, что способ осуществляют методом электрохимического осаждения в емкости, оборудованной электродом сравнения и противоэлектродом и заполненной раствором, содержащим нитрат-анионы и катионы олова из солей SnCl2 с концентрацией 0,05-0,15 моль/л и NaNO3 с концентрацией 0,1-0,3 моль/л, слой оксида олова в виде нанокристаллов осаждают с помощью циклической вольтамперометрии на диэлектрическую подложку, оборудованную полосковыми сенсорными электродами, выполняющими роль рабочего электрода, в растворе, величина pH которого составляет 1,45±0,02, путем изменения потенциала, подаваемого на сенсорные электроды, от 0 В в отрицательную сторону относительно потенциала электрода сравнения, до величин не менее -1,7 В со скоростью развертки потенциала в диапазоне 0,02-0,25 В/с, затем осуществляют увеличение потенциала до величины не выше +2,0 В и обратное снижение до 0 В с той же скоростью развертки, при этом описанную циклическую последовательность изменения потенциалов применяют многократно до исчезновения пика на кривой циклической вольтамперометрии. Технический результат: обеспечение возможности получения газочувствительного слоя оксида олова непосредственно на подложке без примеси металлического олова. 5 з.п. ф-лы, 9 ил.

Группа изобретений относится к области газового анализа. Мультисенсорный газоаналитический чип (МГЧ) включает диэлектрическую подложку со сформированным набором компланарных полосковых электродов, поверх которых нанесен матричный слой из вискеров титаната калия общей химической формулы КхН2-хTinO2n+1, где х=0-2, n=4-8. При этом каждая пара электродов образует сенсорный сегмент матричного слоя вискеров титаната калия, плотность которого различна для разных сегментов и сопротивление которого изменяется под воздействием горючих газов при комнатной температуре. Согласно способу изготовления мультисенсорного газоаналитического чипа на основе вискеров титаната калия диэлектрическую подложку промывают в органическом растворителе и дистиллированной воде, сушат под вакуумом при температуре 60-100°С, наносят на поверхность подложки набор компланарных полосковых электродов из благородного металла толщиной 0,1-1 мкм и шириной 50-200 мкм с зазором между электродами 10-100 мкм методом катодного и/или магнетронного напыления, поверх электродов наносят суспензию из диспергированного в дистиллированной воде порошка вискеров титаната калия концентрацией 0,01-5 мас.% и сушат полученную структуру при комнатной температуре в течение 24 часов. Технический результат заявляемой группы изобретений заключается в создании МГЧ на основе слоя вискеров титаната калия (ВТК), позволяющего проводить анализ вида газовой среды при комнатной температуре, что ведет к существенному снижению энергопотребления такого вида устройств и расширению области его технического применения. 2 н. и 3 з.п. ф-лы, 9 ил.

Изобретение относится к области производства материалов для твердотельной электроники, а именно к составам для получения композиционных материалов с высокой диэлектрической проницаемостью, и может быть использовано при создании конденсаторов, суперконденсаторов, оптоэлектронных преобразователей, топливных элементов, приборов фотовольтаки и др. Состав включает водный 2-9%-ный раствор поливинилового спирта, титанат калия-железа, имеющий структуру голландита и химический состав, соответствующий формуле K1,54Ti8-xFexO16, предпочтительно K1,54Ti7,4Fe0,6O16, добавку в виде фосфорно-вольфрамовой кислоты и пластификатор в виде глицерина при следующем соотношении компонентов, мас.%: водный раствор поливинилового спирта - 38-64, титанат калия-железа - 20-50, фосфорно-вольфрамовая кислота - 0-1, глицерин - остальное. Получаемый из состава композиционный материал обладает высокими диэлектрическими характеристиками. 2 з.п. ф-лы, 2 табл.
Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к технологии получения полимерных композитов с высокой диэлектрической проницаемостью, и может быть использовано при создании различных приборов и устройств твердотельной электроники, в том числе конденсаторов, суперконденсаторов, оптоэлектронных преобразователей, топливных элементов и др. Состав для получения полимерного композиционного материала включает водный 2-9% раствор поливинилового спирта, твердый электролит в виде фосфорно-вольфрамовой кислоты, наночастицы полититаната калия и пластификатор в виде глицерина, при следующем соотношении компонентов, мас.%: поливиниловый спирт - 34-64; фосфорно-вольфрамовая кислота - 5-20; полититанат калия - 20-50; глицерин - остальное. Обеспечивается получение полимерного композиционного материала, обладающего высокими диэлектрическими характеристиками при неизменном значении эффективной ионной проводимости, и относительно низкой составляющей электронной проводимости. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к композитным диэлектрикам, и может быть использовано при создании различных электронных приборов и устройств, рабочие параметры которых определяются величиной диэлектрической проницаемости межэлектродного пространства емкостных элементов, в том числе при производстве микроконденсаторов и емкостных датчиков давления и перемещения. Повышение диэлектрической проницаемости материала при сохранении высокой текучести в широком температурном диапазоне является техническим результатом изобретения. Жидкий композитный диэлектрик включает органическую жидкость с гомогенно диспергированным в ней порошком сегнетоэлектрика в форме сложного оксида с размером частиц не более 400 нм, стабилизирующую добавку в виде поверхностно-активного вещества, предохраняющую от высаживания твердой фазы из жидкого диэлектрика, в количестве 1,0-1,5% от массы общего содержания порошка сложного оксида в смеси, и добавку металлорганического соединения, увеличивающую плотность органической жидкости, в количестве 2-5% от массы органической жидкости. При этом в качестве сложного оксида использовано соединение состава K1.46Ti8-хМeхO16, где Ме=Fe или Ni, x=0,3-0,7, а в качестве органической жидкости - жидкость с температурой замерзания не выше -40°С и температурой кипения не ниже +150°С, при общем содержании нанопорошка-сегнетоэлектрика от 35 до 45 весовых частей, а органической жидкости - от 55 до 65 весовых частей. Полученный жидкий композитный диэлектрик обладает высокой текучестью и стабильностью к расслаиванию, а также имеет диэлектрическую проницаемость на уровне не менее 105 при частоте 40 Гц. 3 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области газового анализа, а именно к способам распознавания состава многокомпонентных газовых смесей. Задачей изобретения является разработка способа анализа состава газовой среды путем измерения полного сопротивления (импеданса) газочувствительного полупроводникового слоя, сегментированного набором компланарных электродов в составе мультисенсорного чипа, при воздействии различных газовых сред, позволяющего проводить их качественное распознавание. Техническим результатом является увеличение точности анализа состава газовой среды с помощью мультисенсорного чипа согласно принципам работы прибора вида «электронный нос» за счет увеличения количества характеристик, используемых для построения векторного отклика, чувствительного к виду газовой среды, путем определения набора параметров, изменяющихся при воздействии газов, по измерениям спектра (или частотной зависимости) импеданса отдельных сенсорных сегментов чипа. Важной особенностью способа является применение низких частот (10-2-102 Гц), в котором изменение импеданса, обусловленное адсорбцией газов, учитывает медленные процессы токопереноса в газочувствительном полупроводниковом материале, что определяет соответствующее изменение элементов эквивалентной электрической цепи, используемое в данном способе для решения задачи анализа газового состава. При этом измерение бòльшего количества сенсорных сегментов чипа позволяет увеличить размерность анализируемого векторного сигнала и повысить точность идентификации газа. 5 з.п. ф-лы, 7 ил.
Изобретение относится к химической промышленности, а именно к пленкам и покрытиям, фотокаталитически активным в видимой области спектра солнечного излучения. Описано Фотокаталитическое покрытие в виде композиционного материала. Композиционный материал состоит из двух слоев, нанесенных на субстрат. Слои включают поливинилбутираль и диспергированные в нем частицы фотокатализатора. В качестве фотокатализатора используют наноразмерный порошок протонированного полититаната калия, модифицированного соединениями переходных металлов. Содержание фотокатализатора в первом слое покрытия, нанесенном непосредственно на поверхность субстрата, составляет 5-20 мас.%, а во втором слое, нанесенном на первый слой - 80-86 мас.%. Технический результат - получение композиционного материала, обладающего высокой адсорбционной и фотокаталитической активностью в видимой области спектра солнечного излучения. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области производства материалов для электрохимического и электрофизического приборостроения, а именно к технологии получения полимерных протонпроводящих композитов с высокой диэлектрической проницаемостью, и может быть использовано при создании различных электрохимических приборов и устройств, в том числе суперконденсаторов, электрохромных приборов и оптоэлектронных преобразователей, топливных элементов и др. Состав для получения полимерного протонпроводящего композиционного материала включает водный 2-9% раствор поливинилового спирта, протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты, наночастицы полититаната калия и пластификатор в виде глицерина, при следующем соотношении компонентов, мас. %: водный раствор поливинилового спирта 38-64; фосфорно-вольфрамовая кислота 19-50; полититанат калия 0,1-5,0; глицерин остальное. Способ получения полимерного протонпроводящего композиционного материала из предлагаемого состава включает смешивание наночастиц полититаната калия с водным 2-9%-ным раствором поливинилового спирта, гомогенизацию полученной смеси в течение не менее 3 часов с последующим добавлением в смесь навески фосфорно-вольфрамовой кислоты и перемешиванием в течение 8-12 ч до полного растворения кислоты, добавление в полученную смесь глицерина и ее выдерживание в течение 2-3 суток при комнатной температуре при постоянном перемешивании до полной гомогенизации, нанесение полученной смеси на основание с последующим выдерживанием при температуре не более 40°С в течение времени, обеспечивающего полимеризацию смеси с получением композиционного материала в виде пленки или пленочного покрытия. При этом наночастицы полититаната калия имеют среднее значение эффективного диаметра не более 600 нм, предпочтительно не более 300 нм, и толщину не более 40 нм, предпочтительно 20 нм. Изобретение позволяет получить полимерный протонпроводящий композиционный материал, обладающий высокой ионной проводимостью и относительно низкой составляющей электронной проводимости, а также характеризуемый высокой диэлектрической проницаемостью и высокой скоростью полимеризации при использовании материала в производственных технологических процессах. 2 н. и 2 з.п. ф-лы, 2 табл.
Изобретение относится к области получения антифрикционных материалов с покрытиями на основе фтортеломеров алкилкетонов, которые могут быть использованы в узлах трения и в составах смазочных композиций для тяжелонагруженных узлов машин и механизмов. Для получения антифрикционного материала осуществляют нанесение полимерсодержащей композиции на поверхность базового материала из раствора. Осуществляют последующую термообработку и высушивание. В качестве базового материала используют ультрадисперсный порошок титаната щелочного металла, имеющего слоистую структуру. В качестве полимерсодержащей композиции используют раствор фтортеломеров алкилкетонов, полученных реакцией тетрафторэтилена с ацетоном. При этом порошок базового материала помещают в раствор фтортеломера и проводят нанесение покрытия на его поверхность в течение интервала времени 10-600 минут под давлением не менее 10 МПа и температуре 45-150°С. Последующее высушивание осуществляют при температуре не менее 50°С. В качестве базового материала используют, например титанат калия. 1 з.п. ф-лы, 1 табл, 1 пр.
Настоящее изобретение относится к полимерным протонпроводящим композиционным материалам. Описан полимерный протонпроводящий композиционный материал, включающий полимерную линейную матрицу, представляющую собой водный 2-9% раствор поливинилового спирта, содержащий наночастицы серебра размером 20-100 нм в концентрации 40-100 мг/л и диспергированный в ней протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты и пластификатора в виде глицерина при следующем соотношении компонентов, мас.%: водный раствор поливинилового спирта 38-69, фосфорно-вольфрамовая кислота 19-50, глицерин остальное. Технический результат - полимерный протонпроводящий композиционный материал, обладающий высокой ионной проводимостью и максимально низкой электронной составляющей проводимости, обеспечивающий улучшение мощностных характеристик суперконденсаторов или других приборов твердотельной электроники, и увеличение длительности хранения их заряда. 2 табл., 13 пр.

Настоящее изобретение относится к смазочной композиции, содержащей минеральное масло и порошкообразный наполнитель, полученный при испарении и конденсации пара в плазменном испарителе, при этом масло в качестве порошкообразного наполнителя содержит смесь наноразмерного порошка латуни дисперсностью 10… 30 нм, ультрадисперсного порошка полититаната калия интеркалированного цинком дисперсностью 100… 300 нм и поверхностно-активное вещество, причем ультрадисперсный порошок полититаната калия интеркалированного цинком получен химическим методом, при следующем соотношении компонентов в масс.%: порошкообразный наполнитель, состоящий из   смеси наноразмерного порошка латуни,   ультрадисперсного порошка полититаната   калия, интеркалированного цинком, и   поверхностно-активного вещества 0,2 минеральное масло 99,8 Техническим результатом настоящего изобретения является повышение антифрикционных и антизадирных свойств масла. 2 пр, 2 табл., 4 ил.
Настоящее изобретение относится к антифрикционной смазке для узлов трения на основе литиевого мыла стеариновой кислоты и минерального масла, при этом она дополнительно содержит полиэтиленовый воск и суспензию титаната калия при следующем соотношении компонентов, мас.%: литиевое мыло стеариновой кислоты 5,0-12,0; полиэтиленовый воск 1,0-7,0; суспензия титаната калия 1,0-15,0; минеральное масло - остальное до 100%, причем суспензия титаната калия имеет следующий состав (мас.%): порошок титаната калия 60,1-70,0, минеральное масло - остальное до 100%. Техническим результатом настоящего изобретения является повышение трибологических свойств смазки, таких как критическая нагрузка, нагрузка сваривания, диаметр пятна износа, а также снижение степени смываемости смазки водой с поверхностей трения. 4 табл.

Изобретение относится к технологии производства антифрикционных добавок и смазочных композиций для использования в узлах трения качения и скольжения в автомобильной, машиностроительной, текстильной, химической и других отраслях промышленности. Порошок титаната калия состоит из слоистых частиц чешуйчатой формы субмикронного размера, интеркалированных ионами, по крайней мере, одного переходного металла. Частицы титаната калия могут быть одновременно интеркалированы ионами, по крайней мере, одного переходного металла и одним видом поверхностно-активного вещества. Смазочная композиция содержит антифрикционную добавку и смазочный материал, в качестве которого может выступать базовая пластичная смазка либо базовое минеральное, полусинтетическое или синтетическое масло. При этом в качестве антифрикционной добавки используют порошок титаната калия, состоящий из слоистых частиц чешуйчатой формы субмикронного размера, интеркалированых ионами, по крайней мере, одного переходного металла, при следующем соотношении компонентов, мас.%: порошок титаната калия 0,3-12,0, базовый смазочный материал 88,0-99,7. Изобретение позволяет улучшить трибологические свойства порошка титаната калия, снизить коэффициент трения и увеличить подвижность слоев, формирующих его частицы, а также снизить степень агломерированности этих частиц. 2 н. и 10 з.п. ф-лы, 3 ил., 2 табл., 1 пр.

Изобретение относится к химической промышленности, а именно к способам получения высокоэффективных катализаторов, способных очищать воду от загрязнения углеводородами, в частности основными красителями и катионными поверхностно-активными веществами как за счет фотокаталитической активности под действием солнечного излучения, так и в темноте

Изобретение относится к области производства теплоизоляционных материалов и может быть использовано для повышения энергоэффективности термического оборудования, для выполнения теплоизолирующего слоя промышленных установок, работающих при высоких температурах, а также для обеспечения пожаробезопасности установок, зданий и сооружений

Изобретение относится к химической промышленности, а именно к способам получения высокоэффективных фотокатализаторов, активных в видимой области спектра солнечного излучения

Изобретение относится к сорбентам, которые могут быть использованы при очистке водных сред

Изобретение относится к керамической промышленности, а именно к способам получения огнеупорных материалов на основе титаната алюминия, и может найти применение в производстве высокопрочной огнеупорной керамики, обладающей низким термическим коэффициентом линейного расширения и предназначенной для использования в цветной металлургии для футеровки систем транспортировки, распределения и приема расплавов алюминия и его сплавов

Изобретение относится к получению порошкообразного титаната калия, используемого в качестве антифрикционных добавок к смазочным или органическим полимерным материалам

Изобретение относится к химической промышленности, а именно к способам получения керамических изделий, и может найти применение в производстве высокопрочной керамики, используемой в качестве конструкционного, огнеупорного, фрикционного или электроизоляционного материала

Изобретение относится к технологии получения смазочных материалов, в частности к антифрикционным суспензиям, которые могут быть использованы при производстве консистентных смазок, предназначенных для высоконагруженных узлов трения машин и механизмов, а также при приработке новых деталей в узлах трения и при ремонтно-восстановительных операциях

Изобретение относится к синтезу кристаллических титанатов калия - тетратитаната и гексатитаната калия, имеющих волокнистую структуру, и может быть использовано в производстве керамики и наполнителей композиционных материалов

Изобретение относится к синтезу неорганических материалов, а именно к способам получения неволокнистого титаната калия, и может найти применение в химической промышленности, в частности в производстве наполнителей композиционных материалов

 


Наверх