Смазочная композиция

Настоящее изобретение относится к смазочной композиции, содержащей минеральное масло и порошкообразный наполнитель, полученный при испарении и конденсации пара в плазменном испарителе, при этом масло в качестве порошкообразного наполнителя содержит смесь наноразмерного порошка латуни дисперсностью 10… 30 нм, ультрадисперсного порошка полититаната калия интеркалированного цинком дисперсностью 100… 300 нм и поверхностно-активное вещество, причем ультрадисперсный порошок полититаната калия интеркалированного цинком получен химическим методом, при следующем соотношении компонентов в масс.%:

порошкообразный наполнитель, состоящий из смеси наноразмерного порошка латуни, ультрадисперсного порошка полититаната калия, интеркалированного цинком, и поверхностно-активного вещества 0,2 минеральное масло 99,8

Техническим результатом настоящего изобретения является повышение антифрикционных и антизадирных свойств масла. 2 пр, 2 табл., 4 ил.

 

Предлагаемое изобретение относится к смазочным материалам и предназначается для использования в системе смазки дизельных и карбюраторных двигателей.

Известны смазочные масла, содержащие антифрикционные дисперсные материалы (графит, дисульфид молибдена, медь и др.), обеспечивающие высокие трибологические свойства (Виноградова И.Э. Противоизносные присадки к маслам. М., «Химия», 1972, с.24). Недостатком данных смазочных композиций является использование крупнодисперсных порошков (0,5… 100 мкм), обладающих низкой седиментационной устойчивостью в моторном масле.

Наиболее близкой к предлагаемому по составу, свойствам и применению является смазочная композиция (патент РФ №2123030, МПК С10М 125/00, С10М 125/00, С10М 125/04, С10М 125/22, С10М 125/24, C10N 30/06, опубликовано: 10.12.1998), содержащая, масс.%:

порошкообразный наполнитель, состоящий из
смеси ультрадисперсного порошка
латуни и ультрадисперсного
порошка сплава меди, серы и фосфора 0,15
минеральное масло 99,85

Однако известная смазочная композиция обладает сравнительно невысокими антифрикционными и антизадирными свойствами, т.к. данное сочетание компонентов порошкообразного наполнителя придает минеральному маслу в основном противоизносные свойства. Поэтому при использовании данной композиции в системе смазки двигателя сохраняется высокая вероятность образования задира и схватывания ответственных сопряжений в момент пуска и остановки двигателя.

Технической задачей изобретения является повышение антифрикционных и антизадирных свойств масла.

Поставленная задача решается в смазочной композиции, содержащей минеральное масло и порошкообразный наполнитель, полученный при испарении и конденсации пара в плазменном испарителе, отличающейся тем, что масло в качестве порошкообразного наполнителя содержит смесь наноразмерного порошка латуни дисперсностью 10... 30 нм, ультрадисперсного порошка полититаната калия, интеркалированного цинком, дисперсностью 100… 300 нм и поверхностно-активное вещество, причем ультрадисперсный порошок полититаната калия интеркалированного цинком получен химическим методом, при следующем соотношении компонентов, масс.%:

порошкообразный наполнитель, состоящий из
смеси наноразмерного порошка латуни,
ультрадисперсного порошка полититаната
калия, интеркалированного цинком, и
поверхностно-активного вещества 0,2
минеральное масло 99,8

Наноразмерные и ультрадисперсные порошки были получены раздельно. Наноразмерный порошок латуни был получен из смеси крупнодисперсных порошков латуни Л60 (ГОСТ 2060-73). Ультрадисперсный порошок полититаната калия, интеркалированного цинком, ПТКZnТУ 2146-021-96961827-2008 был получен химическим методом.

Способом производства наноразмерного порошка латуни выбрана плазменная технология, основанная на испарении сырья (крупнодисперсного порошка или прутка) в плазменном потоке с температурой 5000-6000 К и конденсации пара до частиц требуемого размера (патент РФ №2068400, МПК С06В 25/24, H05H 1/00, опубликовано: 27.10.1996).

Принципиальная схема установки приведена на фиг.1. В схеме используется замкнутый газовый цикл. Заполнение системы инертным газом (аргоном) производится из баллона 1. Циркуляция газа по схеме осуществляется при помощи компрессора 3.

Компрессированный газ (до 2 кг/см2) через ресивер 2 поступает на рампу ротаметров 4, через которую распределяется по узлам схемы. В качестве головного аппарата-реактора используется электродуговой плазмотрон 6 линейной конструкции типа ЭДП-104, к которому присоединена реакционная камера 7 с закалочным узлом 8. Процесс переконденсации осуществляется следующим образом. Порошковое сырье из дозатора 5 газовым потоком подается на срез плазмотрона, в плазменную струю. В реакционной камере порошок испаряется в струе горячего газа и затем на выходе из камеры резко охлаждается струями холодного газа в закалочном узле 8 и в трубчатом холодильнике 9. Крупные частицы, в том числе частицы непереработанного сырья, отделяются от наноразмерных порошков в классификаторе инерционного типа 10. Улавливание наноразмерных порошков осуществляется в рукавном фильтре 11, а очищенный газ через ресивер 2 снова поступает в компрессор 3. По мере накопления в фильтре 11 наноразмерный порошок выгружается в тару 12.

Ультрадисперсный порошок НТК синтезируется в расплаве солей при обработке порошка оксида титана в солевом расплаве. Реакционную смесь выдерживают в алундовом (A12O3) тигле в муфельной печи (Thermoline 2510) при температуре 500°С в течение 2 ч. Полученный продукт отмывают от водорастворимых соединений в дистиллированной воде и отфильтровывают с помощью бумажного фильтра Whathman №40.

Интеркаляцию полититаната калия осуществляют в термостатированном сосуде при 23°С, который наполнен водным раствором соли Zn-ZnCl2 из расчета 0,01 моль соли на 10 г полититаната калия. Полученную суспензию перемешивают с помощью магнитной мешалки и отфильтровывают с помощью фильтровальной бумаги Whathman №42. Полученные после фильтрования порошки просушивают при 40°С в сушильном шкафу.

Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемый состав смазочной композиции отличается от известного введением нового компонента, а именно ультрадисперсного порошка полититаната калия, интеркалированного цинком.

Новым в изобретении является то, что состав порошкообразного наполнителя способствует формированию поверхностей трения с повышенными антифрикционными и антизадирными свойствами в различных условиях трения.

Наличие ультрадисперсного порошка полититаната калия, интеркалированного цинком, способствует образованию с металлами структуры с малым сдвиговым сопротивлением, что эффективно снижает коэффициент трения и уменьшает вероятность образования задира.

Наноразмерный порошок латуни обладает высокой пластичностью, что способствует интенсивному формированию трушихся поверхностей за счет заполнения впадин шероховатости и дефектов.

Данные преимущества порошкообразного наполнителя повышают антифрикционные, противоизносные и антизадирные свойства масла.

На фиг.2 изображена зависимость изменения момента трения в процессе испытания.

На фиг.3 изображена величина износа испытываемых образцов.

СРАВНИТЕЛЬНЫЕ ДАННЫЕ ЭКСПЛУАТАЦИОННЫХ СВОЙСТВ ЗАЯВЛЯЕМОГО ТЕХНИЧЕСКОГО РЕШЕНИЯ И ПРОТОТИПА

Изобретение иллюстрируется следующими примерами. В примерах приводятся результаты испытаний, проведенных по методике: эксплуатационные свойства смазочной композиции оценивались исследованиями на машине трения МИ-1 по схеме "ролик-колодка". Продолжительность каждого опыта - 6 ч, частота вращения вала машины трения - 300 мин-1, нагрузка на колодку - 650 Н. Образцы пар трения изготавливали из материалов, применяемых в ДВС. Колодки и ролики изготавливали из серого чугуна СЧ-25 (ГОСТ 1412-85) одной плавки. Твердость образцов составляла НВ 190… 220. Шероховатость рабочей поверхности ролика Ra=0,32 мкм. Перед проведением испытаний образцы пары трения подвергались приработке в течение 3 ч при режимах основного испытания.

Смазка образцов в процессе испытаний обеспечивалась погружением ролика на 1/3 в масляную ванну.

Износ образцов определялся методом взвешивания на аналитических весах марки ВЛА-200 М с точностью измерения 1·10-4 г. В процессе экспериментов непрерывно регистрировалась сила момента трения с помощью самопишущего устройства машины трения.

Антизадирные свойства определяли по нагрузке схватывания образцов трения при ее ступенчатом увеличении. За нагрузку схватывания принимали нагрузку, при которой происходит "холодное" сваривание поверхностей образцов трения. Этот процесс сопровождается резким увеличением момента трения.

Пример 1. Влияние концентрации смазочной композиции на ее антифрикционные и противоизносные свойства.

Смазочную композицию готовили следующим образом: предварительно готовили концентрированную присадку (на 4 кг смазочной композиции), 150 г чистого моторного масла подогревали в специальном приспособлении до температуры 60… 80°С, в него добавляется 7 г наноразмерного порошка латуни, ультрадисперсного порошка полититаната калия, интеркалированного цинком, и поверхностно-активного вещества с соотношением компонентов 50:40:10. Далее механическим способом производили перемешивание полученного состава в течение 0,5… 0,7 ч. Полученная присадка добавлялась в моторное масло до необходимой концентрации.

Для проведения опытов было подготовлено несколько проб с различной концентрацией порошкообразного наполнителя в смазочной композиции. Готовили 4 пробы при следующих значениях концентрации порошкообразного наполнителя в смазочной композиции, масс.%:

1-я проба: прототип

2-я проба: порошкообразный наполнитель 0,15

минеральное масло99,85

3-я проба: порошкообразный наполнитель 0,2

минеральное масло 99,8

4-я проба: порошкообразный наполнитель 0,25

минеральное масло 99,75

Результаты испытаний приведены в таблице 1 и на фиг.2, 3.

Критериями оптимизации при проведении испытаний были приняты: износ образцов (колодки) и сила момент трения.

Таблица 1
Результаты испытания смазочной композиции
Номер пробы Износ образцов, мг Момент трения, Н·м
Начальный После стабилизации
1 2,2 8,2 6,4
2 1,5 6,7 6,3
3 -0,2 4,2 2
4 0,6 6,1 5,5

Из таблицы 1 и фиг.2, 3 видно, что наименьший износ образцов и наименьшее значение силы момента трения достигаются при концентрации порошка в смазочной композиции 0,2%.

Пример 2. Влияние состава композиции на антизадирные свойства поверхностей трения образцов.

С целью выявления антизадирных свойств прототипа и предлагаемого состава смазочной композиции проводились испытания образцов на пробах №1, 2, 3, 4. Затем образцы устанавливали в машину трения и ступенчато нагружали без подвода масла во время проведения всего испытания. Масляная пленка на образцах создавалась путем их окунания в смазочную композицию перед установкой в машину трения. Нагружая образцы, выявляли зависимость момента трения от нагрузки. При этом устанавливали предельную нагрузку, при которой происходило схватывание и задир трущихся поверхностей образцов в режиме «сухого» трения.

Испытания проводили на машине трения МИ-1. Частота вращении ролика - 300 мин-1. Образцы нагружались ступенчато через 0,1 кН, считая первой ступенью нагрузку - 0,1 кН. Продолжительность испытания образцов на каждой ступени определяли стабилизацией момента трения и составила 10 минут.

Результаты испытания представлены в таблице 2 и на фиг 4.

Как видно из таблицы 2, лучшие антизадирные свойства показал образец №3, испытанный с применением предлагаемой смазочной композиции при концентрации наполнителя 0,2%, при этом предельная нагрузка схватывания увеличилась на 21% по сравнению с прототипом.

Таблица 2
Результаты испытания образцов на схватывание
Номер пробы Сила момента трения, Н·м
Ступени нагружения образцов, кН
0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
1-ая проба 0,09 0,15 0,2 0,29 0,36 - схватывание
2-ая проба 0,08 0,13 0,16 0,23 0,29 0,34 - схватывание
3-ая проба 0,03 0,07 0,15 0,18 0,21 0,24 0,27 - схватывание
4-ая проба 0,05 0,09 0,11 0,15 0,18 0,3 - схватывание

Смазочная композиция, содержащая минеральное масло и порошкообразный наполнитель, полученный при испарении и конденсации пара в плазменном испарителе, отличающаяся тем, что масло в качестве порошкообразного наполнителя содержит смесь наноразмерного порошка латуни дисперсностью 10…30 нм, ультрадисперсного порошка полититаната калия интеркалированного цинком дисперсностью 100…300 нм и поверхностно активное вещество, причем ультрадисперсный порошок полититаната калия, интеркалированного цинком, получен химическим методом, при следующем соотношении компонентов в масс.%:

порошкообразный наполнитель, состоящий из
смеси наноразмерного порошка латуни,
ультрадисперсного порошка полититаната
калия, интеркалированного цинком, и
поверхностно-активного вещества 0,2
минеральное масло 99,8



 

Похожие патенты:

Настоящее изобретение относится к пластичной смазке на основе углеводородной дисперсионной среды и полимочевины, при этом она содержит в качестве углеводородной дисперсионной среды полиалкилбензол или его смесь с нефтяным маслом при следующем соотношении компонентов, мас.%: полимочевина - 6-15; дисперсионная среда - остальное, при этом дисперсионная среда имеет состав, мас.%: полиалкилбензол - 5-100; нефтяное масло - 0-95.
Настоящее изобретение относится к антифрикционной смазке для узлов трения на основе литиевого мыла стеариновой кислоты и минерального масла, при этом она дополнительно содержит полиэтиленовый воск и суспензию титаната калия при следующем соотношении компонентов, мас.%: литиевое мыло стеариновой кислоты 5,0-12,0; полиэтиленовый воск 1,0-7,0; суспензия титаната калия 1,0-15,0; минеральное масло - остальное до 100%, причем суспензия титаната калия имеет следующий состав (мас.%): порошок титаната калия 60,1-70,0, минеральное масло - остальное до 100%.

Изобретение относится к электротехнике и может быть использовано при ошиновке энергоемких технологических установок, электролизеров химической промышленности, цветной металлургии, силовой преобразовательной техники.
Настоящее изобретение относится к композиции рабочей жидкости для холодильной машины, при этом она содержит масло для холодильных машин, содержащее смесь по меньшей мере двух сложных эфиров, выбранных из группы сложных эфиров по меньшей мере одного многоатомного спирта, и жирной кислоты с содержанием C5-C9 жирной кислоты 50-100% мол., фторпропеновый хладагент и/или трифторйодметановый хладагент (варианты).
Настоящее изобретение относится к компрессорному маслу, содержащему базовое нефтяное масло и полиметилсилоксан, при этом оно дополнительно содержит 4,4'-динонилдифениламин, пентаэритритовый эфир 3,5-ди-трет-бутил-4-гидроксифенилпропионовой кислоты, 1,2,3-бензотриазол, сложный эфир диалкилдитиофосфорной кислоты и смесь сложных аминов, а в качестве базового масла оно содержит гидрированный остаточный компонент с содержанием ароматических углеводородов 19,0-22,0%, при следующем соотношении компонентов, % мас.: 4,4'-динонилдифениламин 0,95-1,0; пентаэритритовый эфир 3,5-ди-трет-бутил-4-гидроксифенил пропионовой кислоты 0,55-0,65; 1,2,3-бензотриазол 0,045-0,055; сложный эфир диалкилдитиофосфорной кислоты 0,055-0,065; смесь алифатических и ароматических аминов 0,055-0,065; полиметилсилоксан 0,004-0,005; базовое масло - гидрированный остаточный компонент до 100.
Настоящее изобретение относится к смазочной композиции, содержащей полисилоксановую жидкость, нефтяное масло марки МС-14, церезин марки 80, литиевое мыло стеариновой или 12-оксистеариновой кислоты, при этом она дополнительно содержит биоцид на основе 2-октил-3(2Н)-изотиазолона при следующем соотношении компонентов, мас.%: полисилоксановая жидкость - 56-59; церезин марки 80 - 16-20; литиевое мыло стеариновой или 12-оксистеариновой кислоты - 5,5; биоцид на основе 2-октил-3(2Н)-изотиазолона - 1,0; нефтяное масло - остальное.

Изобретение относится к способу селективного получения смазки. Смазка имеет вязкость 4,0 сСт при 100°C, летучесть с потерей массы по Noack менее 15%, индекс вязкости более 120, температуру застывания ниже -50°C и вязкость при -40°C менее 3000 сСт.

Изобретение относится к устройству термогравитационной очистки турбинных и трансформаторных масел от механических примесей и воды, содержащему первую емкость, систему отвода масла из первой емкости, систему подачи масла в первую емкость, включающую ламинирующее поток масла устройство, расположенное в первой емкости выше уровня ее донной части.

Настоящее изобретение относится к высокотемпературной смазочной композиции, содержащей присадку в виде ультрадисперсного порошка углекислого кальция с размером частиц не более 0,1 мкм, олеиновую кислоту и базовую основу, при этом размер частиц углекислого кальция не превышает 0,1 мкм, соотношение компонентов в высокотемпературной смазочной композиции, мас.%: Ультрадисперсный порошок углекислого кальция   с размером частиц не более 0,1 мкм 7,0÷10,0 Олеиновая кислота 1,0÷2,0 Базовая основа Остальное Техническим результатом настоящего изобретения является повышение антифрикционных свойств смазочной композиции и возможность использования в интервалах высоких температур (130-400°C).

Настоящее изобретение относится к применению ионных жидкостей для улучшения защиты против окислительной и термической деструкции смазочной композиции, состоящей из смеси из a) от 82,5 до 95 мас.% базового масла или смеси базового масла на основе синтетических, минеральных или природных масел, которые применяют отдельно или в комбинации, b) от 0,1 до 7,5 мас.% ионной жидкости и c) от 4,9 до 10 мас.% присадки или смеси присадок.
Настоящее изобретение относится к антифрикционной смазке для узлов трения на основе литиевого мыла стеариновой кислоты и минерального масла, при этом она дополнительно содержит полиэтиленовый воск и суспензию титаната калия при следующем соотношении компонентов, мас.%: литиевое мыло стеариновой кислоты 5,0-12,0; полиэтиленовый воск 1,0-7,0; суспензия титаната калия 1,0-15,0; минеральное масло - остальное до 100%, причем суспензия титаната калия имеет следующий состав (мас.%): порошок титаната калия 60,1-70,0, минеральное масло - остальное до 100%.

Изобретение относится к электротехнике и может быть использовано при ошиновке энергоемких технологических установок, электролизеров химической промышленности, цветной металлургии, силовой преобразовательной техники.
Настоящее изобретение относится к пластичной смазке на основе минеральных масел или их смесей, содержащих высокодисперсные наполнители, при этом она подвергнута модификации наночастицами железа, образующегося после перемешивания в реакторе со скоростной мешалкой от 1000 до 2500 об/мин с жидким пентакарбонилом железа и дальнейшим его термическим разложением при температуре 250-300°C при работающей мешалке в течение 30-120 минут, а затем в том же реакторе к полученной массе добавляется тройная смесь порошковых наполнителей - графита (А), дисульфида молибдена (Б) и тетрафторэтилена (В) в соотношении А:Б:В от 40:40:20 до 80:10:10, при этом она содержит в массовых частях: Минеральное масло или смесь минеральных масел 100 Наночастицы железа 0,3-4,0 Тройная смесь наполнителей 15-60 Техническим результатом настоящего изобретения является получение пластичной смазки с улучшенными температурными, антифрикционными и прочностными характеристиками.
Настоящее изобретение относится к смазочной композиции, содержащей минеральное масло и порошкообразный наполнитель, состоящий из смеси наноразмерных порошков дисульфида молибдена и сплава порошков латуни и фосфора, полученных при испарении и конденсации пара в плазменном испарителе с соотношением компонентов, мас.%: 55:30:15, разбавленных в минеральном масле, при этом в композицию добавляют 15% раствора карбамида в 10% водном растворе аммиака в соотношении 50:50 мас.%, разбавленных в 84,7% минерального масла, при этом дисперсность порошкообразного наполнителя составляет 5-10 нм.
Настоящее изобретение относится к присадке к пластичной смазке, содержащей олеиновую кислоту, ультрадисперсный порошок и олеат меди, отличающейся тем, что она дополнительно содержит ультрадисперсный порошок, олеат и стеарат цинка, а также стеариновую кислоту и стеарат меди при следующем соотношении компонентов, мас.%: ультрадисперсный порошок меди 30…40; ультрадисперсный порошок цинка 10…15; олеат меди 10…15; олеат цинка 3…5; стеарат меди 5…10; стеарат цинка 3…5; стеариновая кислота 3…5;олеиновая кислота - остальное.
Изобретение относится к составу металлоплакирующей добавки к пластичным смазочным материалам. .

Изобретение относится к пластичным антифрикционным смазкам, предназначенным для смазывания подшипников качения, работающих в условиях высоких нагрузок при низких и средних скоростях вращения в интервале температур от минус 40 до 120°С.
Изобретение относится к металлоплакирующим составам, применяемым в качестве добавок к моторным, трансмиссионным и индустриальным маслам для снижения и устранения износа трущихся металлических поверхностей, преимущественно для герметичных пар трения, например, деталей автомобильных двигателей, коробок передач и других пар трения.

Изобретение относится к области разработки металлоплакирующих присадок к смазочным композициям, содержащим твердофазные ультрадисперсные добавки металлов, и предназначено для получения нанокластеров меди, свинца, цинка, никеля с размерами частиц 15-50 нм.
Изобретение относится к области машиностроения и предназначено для применения, в частности, в автомобильной промышленности, в оборудовании для пищевой промышленности, а также в судоремонтном и железнодорожном оборудовании в качестве смазки в узлах трения.

Настоящее изобретение относится к смазочной масляной композиции, включающей 100 масс. частей смазки и от 0,01 до 3,0 масс.
Наверх