Патенты автора Балдаев Лев Христофорович (RU)

Изобретение относится к способам получения антикоррозионного металлополимерного покрытия и может быть использовано в нефтегазовой отрасли, в частности на металлических рабочих поверхностях колонного и емкостного оборудования, аппаратов и т.п., применяемых при добыче, транспортировке и переработке природного газа и других углеводородов. Способ получения антикоррозионного металлополимерного покрытия включает последовательное нанесение на подготовленную абразивно-струйной обработкой металлическую поверхность методом электродуговой металлизации металлического слоя и последующее нанесение поверхностного полимерного покрытия, при этом сначала наносят металлический слой из коррозионно-стойкого металла или сплава толщиной 100-1000 мкм, затем металлизационную струю отключают и наносят поверхностный полимерный слой покрытия толщиной 50-200 мкм, при этом полимер наносят в виде жидкости, а временной промежуток между нанесением металлического и полимерного слоев составляет 3-30 минут. Изобретение направлено на повышение эксплуатационных свойств покрытий за счет увеличения их антикоррозионной стойкости и проведения процесса нанесения металлополимерного покрытия в одном технологическом цикле. 1 пр.
Изобретение относится к области закалки и может быть использовано при упрочнении кромок стальных деталей, изготовленных из стали и предназначенных для резки различных материалов. Способ лазерного упрочнения рабочих поверхностей кромок режущего инструмента включает обработку поверхностей кромок лазерным лучом, сфокусированным таким образом, что диаметр его пятна составляет от 0,3 до 3 мм, который перемещают со скоростью до 21,5 м/сек при осуществлении локального нагрева и охлаждения поверхности для непрерывной закалки, при этом при обработке поверхностей используют волоконный источник лазерного излучения мощностью от 700 до 10000 Вт и сканирующую оптическую систему с переменным фокусным расстоянием. Обеспечивается повышение надежности и ресурса при эксплуатации режущего инструмента. 1 пр.

Изобретение относится к способу газофазного осаждения покрытий карбидов тантала на поверхности изделия и может быть использовано для создания защитных покрытий, с высокой твердостью, стойкостью к эрозии и абляции, например, на изделиях из графита и углерод-углеродных композитах в камерах сгорания и соплах авиадвигателей, для создания износостойких твердых покрытий и покрытий с высокими антифрикционными свойствами, для покрытий, играющих роль диффузионного барьера для кислорода и других элементов в изделиях микроэлектроники, в таких, как электрод затвора в структурах оксид-металл-полупроводник n-типа, для покрытий, аккумулирующих солнечную энергию и перспективных для создания элементов солнечных батарей. Способ газофазного осаждения карбидов тантала на поверхность изделия включает подачу паров галогенида тантала, паров галогенида углерода и паров металла-восстановителя к поверхности изделия. Пары указанных веществ транспортируют в потоках инертных газов-носителей по различным каналам к поверхности изделия. При осаждении карбидов тантала на поверхность изделия вблизи поверхности обеспечивают смешение реагентов при элементном составе смеси с соотношениями Та/С от 0,1 до 10 и Me/(G1+G2) от 0,1 до 10 и нагрев реагентов до температур 850-1400 K, при этом Me – металл восстановитель, G1 – галоген, используемый в галогениде Ta, G2 – галоген, используемый в галогениде углерода. Обеспечивается осаждение покрытия карбидов тантала на поверхности изделий при более низких температурах осаждения, при снижении требований к применяемому оборудованию и повышенной безопасности проведения процессов осаждения с получением покрытий улучшенного качества. 4 з.п. ф-лы, 1 ил.
Изобретение относится к способам получения покрытий для защиты от биообрастания корпусов судов и гидротехнических сооружений, устройств, конструкций, эксплуатирующихся в морской среде. Предложен способ получения покрытия с низкой поверхностной энергией против биообрастания на металлических поверхностях, включающий последовательное нанесение на поверхность металлического подслоя и поверхностного слоя, при этом дополнительно наносят переходный металлополимерный слой, причем сначала электродуговым напылением наносят металлический подслой из цинк-алюминий-магниевого сплава толщиной 100-1000 мкм, затем в металлизационную струю инжектируют полимерный компонент, таким образом, чтобы получить переходное металлополимерное покрытие, после чего отключают металлизационную струю и наносят поверхностный полимерный слой толщиной 50-200 мкм с использованием полимерного компонента, затем проводят термообработку покрытия газовым пламенем до температуры 360-380°C, при этом в качестве полимерного компонента используют фторпластовую суспензию. Технический результат: снижение энергозатрат на реализацию способа получения покрытий, отсутствие ограничений по площади нанесения покрытий, повышение эксплуатационных характеристик создаваемых покрытий.
Изобретение может быть использовано при нанесении покрытий на металлические поверхности трапов, лестниц, мостиков, пешеходных дорожек, автомобильных пандусов, вертолетных площадок, палуб судов. Способ получения нескользящего покрытия включает подготовку поверхности и нанесение полимерного покрытия. Подготовку поверхности проводят абразивно-струйной обработкой. Затем последовательно наносят способом электродуговой металлизации металлический подслой из алюминий-магниевого сплава толщиной 100-1000 мкм и слой из полимерно-абразивной композиции толщиной 300-1000 мкм, инжектируя ее на предварительно подогретый газовым пламенем до температуры 150-200°С металлический подслой с сопутствующим подогревом газовым пламенем образующегося покрытия. В качестве полимерного материала используют термопластичный порошковый материал. Абразивный материал используют фракцией 0,1-3 мм. После чего отключают инжектирование полимерно-абразивной композиции и проводят термообработку покрытия газовым пламенем до температуры плавления полимерной составляющей. Полученные покрытия отличаются повышенными эксплуатационными характеристиками, такими как механическая стойкость к истиранию, высокая сила трения покоя. 1 пр.

Изобретение относится к области авиадвигателестроения, в частности к конструкции деталей и сборочных единиц (ДСЕ) соплового аппарата турбины высокого давления (СА ТВД) газотурбинного двигателя, преимущественно для высокоманевренных самолетов. Деталь сборочной единицы соплового аппарата турбины высокого давления изготовлена из жаропрочного и жаростойкого сплава на основе никеля с теплозащитным покрытием, содержащим металлический подслой, керамический подслой и верхний керамический слой, при этом металлический подслой толщиной от 35 до 130 мкм выполнен плазменным напылением порошкового сплава на основе никеля, содержащего 18-25% кобальта, 13-22% хрома, 10-15% алюминия и 0,1-0,9 иттрия, причем объемная пористость и объемное содержание включений оксидов в слое в сумме составляют не более 7%, керамический подслой толщиной от 120 до 220 мкм выполнен плазменным напылением порошкового материала на основе диоксида циркония, содержащего 7,5-11,5% оксида диспрозия, при этом пористость слоя составляет от 5 до 20%, а верхний керамический слой толщиной от 30 до 130 мкм выполнен плазменным напылением порошкового материала на основе диоксида циркония, содержащего 45-65% оксида гадолиния, при этом пористость слоя составляет от 5 до 20%. Техническим результатом изобретения является повышение ресурса ДСЕ СА ТВД газотурбинного двигателя до 2000 часов за счет снижения температуры на поверхности ДСЕ путем нанесения на поверхности, наиболее контактирующие с газовым потоком, многослойного теплозащитного покрытия с верхним керамическим слоем, обладающим низкой теплопроводностью. 1 табл., 1 пр.
Изобретение относится к области судостроения и может быть применено для технического обслуживания и ремонта судовой техники, в частности для ремонта рубашки вала баллера. Ремонт рубашки вала баллера производят на базе мобильного высокопроизводительного комплекса, состоящего из складского, рабочего и лабораторного отсеков. На установке абразивоструйной обработки, расположенной в складском отсеке, подготавливают поверхность вала баллера, предназначенную для ремонта таким образом, чтобы получить поверхность под наплавку. Затем вал баллера устанавливают во вращатель универсальный, размещенный в рабочем отсеке мобильного высокопроизводительного комплекса и производят наплавку порошковым материалом, подходящим для наплавки на материал основы. После чего наплавляют коррозионно-стойкое покрытие. При ремонте рубашки вала баллера осуществляют наплавку на образец таким образом, после окончания ремонта в лабораторном отсеке проводят металлографическое исследование наплавки на образце. Технический результат заключается в повышении качества ремонта рубашки вала баллера за счет восстановления ее геометрических размеров порошковым материалом, подходящим для наплавки на материал основы, и последующего создания на поверхности коррозионно-стойкого покрытия методом лазерной наплавки. 2 пр.

Изобретение относится к области технического обслуживания и ремонта судовой техники, в частности, в условиях морских либо речных портов. Мобильный высокопроизводительный роботизированный комплекс для ремонта судовой техники включает размещенные в контейнерах рабочие места, оснащенные коммуникациями, инструменты и оборудование. Комплекс состоит из двух морских контейнеров, один из которых является технологическим и состоит из рабочего и операторского отсека, а второй является лабораторно-транспортным и состоит из лабораторного и складского отсеков. В рабочем отсеке размещено оборудование порошковой лазерной наплавки и/или газотермического напыления, робот-манипулятор и вращатель универсальный. В операторском отсеке размещены рабочее место и оборудование для управления роботом, а также оборудование для управления комплексом. В складском отсеке размещено оборудование абразивоструйной обработки и электродуговой металлизации. В лабораторном отсеке размещено лабораторное оборудование для контроля покрытий и наплавленных слоев. Техническим результатом является обеспечение оперативного производства и ремонта судовых деталей в условиях морского либо речного порта при помощи технологий напыления и наплавки, роботизация технологических процессов судостроительного и судоремонтного производства, модернизация и дооснащение построечно-спусковых сооружений. 3 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для нанесения металлополимерных покрытий и может быть использовано для изготовления, ремонта и упрочнения поверхностей в различных отраслях промышленности. Устройство для нанесения металлополимерного покрытия содержит пистолет-металлизатор, выполненный с возможностью подачи двух проволочных металлических материалов, при соприкосновении которых возбуждается электрическая дуга для формирования металлизационной струи, кольцевой контур, представляющий собой полую трубку с равномерно расположенными отверстиями, который смонтирован на корпусе пистолета-металлизатора и выполнен с возможностью активации и дополнительного подогрева металлизационной струи пропановым или пропан-бутановым, или пропан-воздушным пламенем, насадку, смонтированную на сопле пистолета-металлизатора, содержащую два поворотных держателя с форсунками для инжектирования в металлизационную струю термопластических полимерных порошковых материалов, при этом форсунки выполнены с возможностью поворота, позволяющего инжектировать упомянутый термопластический полимерный порошковый материал в разные зоны металлизационной струи. Обеспечивается сокращение количества технологического оборудования, уменьшение времени нанесения металлополимерного покрытия, формирование металлополимерного покрытия в рамках одного процесса без переналадки оборудования, получение функционального металлополимерного покрытия с требуемыми свойствами, за счет возможности использования в качестве легирующих материалов разных термопластичных полимерных порошковых материалов. 3 ил.

Изобретение относится к способу восстановления и упрочнения антивибрационных полок титановых лопаток компрессора ГТД и может быть использовано в отрасли авиастроения для ремонта и упрочения как бывших в эксплуатации, так и новых титановых лопаток компрессора ГТД. Методом лазерной наплавки осуществляют нанесение порошкового материала на основе титана. В качестве порошкового материала используют композитную смесь порошков титанового сплава и карбида титана с фракцией 20-200 мкм и 10-70 мкм соответственно в пропорциях 3/17-1/4. Техническим результатом изобретения является достигаемая экономическая выгода за счет повышения стойкости и межремонтного интервала рабочих лопаток компрессора ГТД, а также увеличение технологичности с минимизацией влияния человеческого фактора на производстве. 2 ил., 1 пр.
Изобретение относится к способу электродугового напыления покрытий и может быть использовано в машиностроении для повышения удобства в эксплуатации при нанесении покрытий на труднодоступные поверхности изделий. Нанесение покрытия осуществляют с помощью металлизационной струи и инжектирования в металлизационную струю полимерных термопластичных материалов. Создают металлизационную струю и сначала наносят металлический слой толщиной 20-600 мкм. Наносят композитный слой толщиной 20-600 мкм таким образом, что инжектируют в металлизационную струю полимерные термопластичные материалы и затем отключают металлизационную струю и наносят полимерный слой толщиной 20-600 мкм без участия металлизационной струи. При выполнении слоев с участием полимерных термопластичных материалов дополнительно вводят пропан или пропан-бутан, или пропан-воздушную смесь. Технический результат состоит в сокращении количества технологических видов оборудования (объединение двух технологических видов оборудования в один), уменьшении времени нанесения металлополимерного покрытия (за счет исключения времени на переналадку оборудования под другой процесс нанесения покрытий), формировании металлополимерного покрытия в рамках одного процесса без переналадки оборудования, получении функционального металлополимерного покрытия с требуемыми свойствами. 2 пр.
Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте жаровых труб, работающих в условиях воздействия газообразивной эрозии. Жаровая труба газовой турбины ГТД-110М с нанесенным на внутреннюю поверхность жаровой трубы методом плазменного напыления жаростойкого подслоя толщиной 150-200 мкм и затем керамического термобарьерного слоя. Керамический термобарьерный слой напыляют плазмотроном толщиной 100-120 мкм, затем жаровую трубу подвергают двухстадийной обработке. Вначале в вакууме при давлении 1×10-4 мм рт.ст. нагревают до температуры 1050°С в течение 3-4 часов, выдерживают при той же температуре 2 часа и охлаждают с печью в вакууме. После чего на воздухе нагревают до температуры 850°С в течение 2,5-3 часов, выдерживают при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Изобретение позволяет увеличить газообразивную стойкость защитного покрытия жаровой трубы газовой турбины без ухудшения аэродинамических характеристик жаровой трубы.
Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте лопаток, работающих в условиях воздействия газоабразивной эрозии. Лопатка газовой турбины ГТД-110М имеет нанесенный на ее поверхность методом высокоскоростного газопламенного напыления жаростойкий подслой толщиной 150-200 мкм и керамический термобарьерный слой. Керамический термобарьерный слой напыляют плазмотроном толщиной 100-120 мкм, затем лопатку подвергают двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревают до температуры 1050°С в течение 3-4 часов, выдерживают при той же температуре 2 часа и охлаждают до температуры 700°С со скоростью 40-50°С. После чего на воздухе нагревают до температуры 850°С в течение 2,5-3 часов, выдерживают при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Изобретение позволяет увеличить газоабразивную стойкость защитного покрытия лопатки газовой турбины.

Изобретение относится к области судовых движителей, а именно к защите гребных винтов и других судовых движителей. Гребной винт с защитным металлополимерным покрытием состоит из лопастей и ступицы, покрытых защитным покрытием. Покрытие поверхности лопастей и ступицы толщиной 100-300 мкм содержит два сплошных слоя. Первый из которых выполнен из металлического сплава с высокой химической стойкостью и высокими механическими свойствами. Второй слой выполнен из термопластичного полимера с низкой поверхностной энергией. Достигается повышение стойкости гребного винта к электрохимической коррозии и прочностных характеристик, улучшение гидродинамических и кавитационных характеристик. 2 з.п. ф-лы, 2 ил.

Изобретение относится к способу газофазного осаждения покрытий тантала на поверхности изделий и может быть использовано для создания защитных покрытий, например, на оружейных стволах, в печатающих головках струйных устройств, биомедицинских имплантатах, а также для создания покрытий в изделиях микроэлектроники, например, в качестве диффузионного барьера между медью и кремнием, в качестве электрода затвора в полупроводниковых полевых транзисторах. Способ газофазного осаждения тантала на поверхность стального изделия включает подачу паров галогенида тантала и паров восстановителя к поверхности стального изделия. В качестве восстановителя используют кадмий, цинк, магний или алюминий. Пары галогенида тантала и пары восстановителя транспортируют к поверхности стального изделия в потоках инертных газов-носителей раздельно. Перед осаждением на поверхность стального изделия обеспечивают смешивание упомянутых паров галогенида тантала и паров восстановителя в соотношении от 1:1 до 1:10 и их нагрев до 500-1400оС. В частных случаях осуществления изобретения в качестве галогенида тантала используют бромид тантала. В качестве галогенида тантала используют иодид тантала, при этом в поток иодида тантала добавляют пары йода. Обеспечивается осаждение покрытий тантала на поверхности изделий в безводородной атмосфере при относительно низких температурах осаждения, что улучшает качество покрытий, обеспечивает безопасность работы и снижает требования к оборудованию. 2 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к порошковой смеси для газотермического напыления уплотнительного покрытия лопаток турбин. Смесь содержит порошок на основе диоксида циркония, стабилизированного оксидом иттрия, в качестве основного компонента и порообразователь - порошок фторопласта марки Ф-4Д или порошок лавсана в количестве 1…10 мас.%. Обеспечивается повышение качества характеристик уплотнительных покрытий. 1 табл., 2 пр.

Изобретение относится к трубному производству, в частности к способу обработки ниппельной части резьбового соединения насосно-компрессорной трубы, и может быть использовано при строительстве нефтяных, газовых и газоконденсатных скважин. Способ включает нанесение на трубу покрытия. Покрытие наносят горелкой методом высокоскоростного газопламенного напыления. В качестве покрытия используют смесь самофлюсующегося сплава системы Ni-Cr-B-Si-Mo и абразивного порошка в соотношении 3,4-3,6:1 или смесь WC/Co/Cr и антифрикционной добавки в соотношении 1:1. Техническим результатом является повышение равномерности покрытия, повышение уровня герметизации резьбового соединения, износостойкости, уменьшение шероховатости покрытия, повышение антифрикционных свойств с толщиной слоя в пределах допуска на профиль резьбы. 2 н. и 22 з.п. ф-лы, 1 табл.

Изобретение относится к области дозирования реагентов в поток газа-носителя с раздельной подачей реагентов в реакционную камеру. Дозатор-смеситель содержит корпус, испарители и нагреватели, поддерживающие заданную температуру для испарения реагентов, и два испарителя, установленные друг над другом и закрытые через прокладки крышками с отверстиями для подачи газа-носителя. Испарители выполнены со спиральными перегородками, образующими спиральные каналы, в которые загружен реагент для насыщения газа-носителя, коаксиально установленные сопловые вкладыши, образующие каналы для подачи насыщенной парогазовой смеси по сопловым каналам в реакционную камеру, и буферную зону, расположенную между упомянутыми двумя испарителями, полость которой выполнена герметичной от соседних зон испарения испарителей, для подачи в нее парогазовой смеси, подготовленной вне реактора, и с возможностью подачи парогазовой смеси из нее по сопловому каналу в реакционную камеру. Техническим результатом предлагаемого решения является обеспечение точности регулирования состава соединений, получаемых в результате взаимодействия реагентов, простота и компактность конструкции. 1 ил.
Изобретение относится к области химического, нефтехимического, нефтеперерабатывающего машиностроения и может быть использовано для защиты основного и вспомогательного оборудования указанных производств от воздействия агрессивных коррозионно-активных сред. Способ формирования на поверхности детали нефтехимического оборудования покрытия методом высокоскоростного газопламенного напыления включает активацию поверхности детали механическим воздействием ускоренных абразивных частиц в процессе абразивно-струйной обработки, выбор оптимального режима напыления материала покрытия, который осуществляют по структурному фактору покрытия, обеспечивающему его пористость не более 1% и газопроницаемость до 8-10 атмосфер в атмосфере гелия, подачу наносимого материала покрытия в горелку, закрепленную на манипуляторе, вращающемся на 360 градусов, формирование однослойного функционального покрытия толщиной 410±10 мкм напылением покрытия при движении горелки или формирование гетерогенного многослойного функционального покрытия толщиной 410±10 мкм путем послойного нанесения покрытия при движении горелки, при этом толщина функционального слоя, обеспечивающего повышение адгезии с материалом основы, составляет не более 200 мкм, и управление режимом напыления при помощи контрольно-измерительного оборудования, поддерживающего давление в камере сгорания горелки не менее 3 МПа и степень избытка окислителя 0,6-1. Изобретение позволяет повысить адгезию покрытия с материалом основы, повысить коррозионно-механические свойства, такие как износостойкость, абразивная стойкость и коррозионная стойкость. 2 н. и 3 з.п. ф-лы.
Изобретение относится к химическому, нефтехимическому, нефтеперерабатывающему машиностроению, а именно к составам для защиты основного и вспомогательного оборудования указанных производств от воздействия агрессивных коррозионно-активных сред. Коррозионно-стойкое покрытие для защиты внутренней поверхности технологического оборудования, подвергаемого износу под действием среды с содержанием сероводорода до 20% содержит, мас. %: Cr 13-22, С 0,01-0,1, Мо 1,0-3,0, Ni 10,0-14,0, Fe - остальное, или Cr 20-28,5, С 0,1-1,5, Si 1,0-2,0, Mn 0,5-1,1, Мо 3,0-5,0, Ni 14,5-17,0, Fe - остальное. Коррозионно-стойкое покрытие для защиты внутренней поверхности технологического оборудования, подвергаемого износу под действием среды с содержанием сероводорода более 20%, содержит, мас.%: Cr 16,0-18,0, С 0,01-0,1, Мо 1,0-3,0, Ti 0,5-1,2, Ni 12,0-14,0, Fe - остальное, при углеродном эквиваленте Сэкв. в диапазоне от 4,50 до 5,3 и коэффициенте питтингостойкости PREN в диапазоне от 22,6 до 30,2, или Cr 20-24,0, С 0,01-0,02, Fe 3,0-5,0, Мо 13,0-15,0, W 2,0-4,0, Ni - остальное, при углеродном эквиваленте Сэкв. в диапазоне от 9,5 до 11,2, а коэффициенте питтингостойкости PREN в диапазоне от 60,25 до 76,4. Изобретение позволяет повысить адгезию с материалом основы, коррозионно-механические свойства: износостойкость, абразивную стойкость, коррозионную стойкость. 4 н.п. ф-лы, 4 пр.

Изобретение относится к области порошковой металлургии, в частности к порошковым материалам для газотермического напыления покрытий, и может быть использовано для защиты деталей горячего тракта авиационных газотурбинных двигателей (ГТД), наземных газотурбинных установок (ГТУ) и ракетных двигателей (РД) от воздействия высоких температур, эрозионного износа и коррозии. Порошковый материал имеет общую формулу AXBYCZ (А=Nd, Sm, Gd, Dy, Y или их смеси; В=Zr, Hf или их смеси; С=О; 1,5⋅Х+2⋅Y=6,0…8,0; X:Y=0,80…1,25, размер частиц порошка составляет 5…150 мкм, насыпная плотность порошка находится в диапазоне 0,5…3,5 г/см3, а размер кристаллитов (областей когерентного рассеяния) составляет 1…300 нм. Порошковый материал также может содержать оксиды элементов: SiO2 - до 0,05% мас., CaO - до 0,1% мас., MgO - до 0,1% мас., Fe2O3 - до 0,1% мас., Al2O3 - до 0,1% мас. и TiO2 - до 0,8% мас. или их смесь. Технический результат заключается в повышении стойкости теплозащитных покрытий к воздействию высоких температур, а также в достижении теплозащитного эффекта на поверхности детали. 9 з.п. ф-лы, 1 табл.
Изобретение относится к области металлургии, а именно к составам для защиты лопаток паровых турбин от ударно-капельной эрозии. Сплав на основе кобальта для наплавки на лопатки паровой турбины содержит: B 1,5-5, C 0,5-1, Cr 15-18, Fe 10-12, Ni 5-10, Mo 2-4, Si 2-4, Mn 5-8, Cu 2-5, W 10-12, Co - остальное. Увеличивается стойкость к ударно-капельной эрозии. 1 пр.

Изобретение относится к области газотермического напыления покрытий, в частности к способам напыления жаростойких и теплозащитных покрытий. Наносят основной металлический жаростойкий подслой. Наносят верхний керамический теплозащитный слой с последующей лазерной обработкой. Лазерную обработку выполняют с использованием лазерного луча, имеющего П-образное распределение энергии по сечению. Выходные значения мощности и скорость сканирования лазерного луча задают соответственно в диапазоне 100-6000 Вт и 0,01-1 м/с. В другом варианте изобретения наносят основной металлический жаростойкий подслой. Наносят верхний керамический теплозащитный слой с последующей лазерной обработкой. Лазерную обработку выполняют с использованием лазерного луча, имеющего П-образное распределение энергии по сечению. Выходные значения мощности и скорость сканирования лазерного луча задают соответственно в диапазоне 100-6000 Вт и 0,01-1 м/с. Затем повторно проводят лазерную обработку с параметрами лазерного луча, соответствующими предыдущей лазерной обработке. до получения покрытия с заданными свойствами. Техническим результатом является повышение стойкости теплозащитных покрытий к воздействию высоких температур (термостойкости и жаростойкости), эрозии и коррозии с помощью оплавления верхнего керамического слоя. 2 н. и 8 з.п. ф-лы, 1 табл., 1 пр.

Группа изобретений относится к контейнерам для длительного хранения и транспортировки отработавшего ядерного топлива. Способ защиты контейнера для транспортировки и/или хранения отработавшего ядерного топлива включает нанесение антикоррозионного покрытия на внутреннюю поверхность стакана. Антикоррозионное покрытие наносят методом лазерной наплавки, а в качестве покрытия используют коррозионно-стойкую композицию, включающую никель. Кроме этого, имеются способы, в которых покрытие наносят методом высокоскоростного газопламенного напыления, методом электродуговой металлизации и с помощью плазменной струи. Группа изобретений позволяет повысить эксплуатационные характеристики контейнера за счет нанесения защитной коррозионно-стойкой композиции. 4 н. и 9 з.п. ф-лы, 1 табл.

Изобретение относится к металлургии, в частности к литейным коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, работающих в агрессивных средах при температурах 700-920°C, а также для ремонта дефектов поверхности изделия, возникающих в результате литья или эксплуатации. Сплав на основе никеля для изготовления и ремонта лопаток газотурбинных установок содержит, мас. %: углерод 0,04-0,06, хром 13,5-14,1, кобальт 14,9-15,5, вольфрам 1,7-2,1, молибден 1,8-2,2, алюминий 2,6-2,8, гафний 0,1-0,2, церий 0,02±0,005, иттрий 0,02±0,005, кремний 0,1±0,03, бор 0,01±0,002, цирконий 0,05±0,01, титан 5,55-6,05, ниобий 0,1-0,2, марганец 0,07-0,13 и никель остальное. Сплав характеризуется повышенными характеристиками длительной прочности, сопротивления окислению и коррозии. Обеспечиваются повышенная структурная стабильность на ресурс, стабильность технологических характеристик сплава и ремонтного покрытия. 4 табл.

Изобретение относится к области газотермического нанесения покрытий, а именно к технологии подготовки поверхности изделия перед нанесением газотермических покрытий. Способ нанесения газотермического покрытия на поверхность изделия включает совместное воздействие на поверхность потока абразивных и напыляемых частиц, при этом осуществляют импульсную подачу потока абразивных и напыляемых частиц одновременно с помощью детонационной установки, выполненной с двумя дозаторами для абразивных и напыляемых частиц, которые вводят в ствол упомянутой установки на расстоянии между местами ввода не менее 9-ти калибров ствола. Ввод абразивных частиц осуществляют ближе к срезу упомянутого ствола. Повышается степень активации напыляемой поверхности, что обеспечивает существенный рост прочности сцепления первых слоев покрытия с подложкой. 4 ил., 1пр.
Изобретение относится к способу получения покрытия на поверхности элемента статора энергетических турбин. Способ включает нанесение покрытия методом плазменного напыления. Порошок покрытия напыляют под углом 55-70 градусов по отношению к поверхности напыления. Скорость перемещения горелки относительно напыляемой поверхности элемента статора 0,5-1,0 м/с. Площадь пятна напыления на поверхности элемента статора составляет 1,7-5,0 см2. Техническим результатом является отсутствие трещин и расслоений в покрытии за счет снижения нагрева напыляемой поверхности в 3-4 раза, увеличение прочностных свойств покрытия, при этом увеличивается также коэффициент использования напыляемого порошка. 1 табл.
Изобретение относится к способу ремонта лопаток энергетических установок. Способ включает подготовку поверхности лопатки. Нанесение покрытия с применением лазерного излучения и одновременной подачей порошкообразного присадочного материала в ванну расплава. В процессе наплавки осуществляют изменение мощности излучения Р в пределах от 300 до 2500 Вт, и/или скорости перемещения источника излучения V в пределах от 0,1 до 0,01 м/с, и/или количества подаваемого порошкового материала в пределах от 3 до 15 г/мин. Технический результат заключается в снижении длительности проведения ремонтных работ и улучшении качества наплавки.
Изобретение относится к области энергомашиностроения, в частности к материалам для парогазовых установок на базе газотурбинных установок большой мощности и может быть использовано для защиты лопаток и других деталей газотурбинного двигателя от воздействия высоких температур, эрозионного износа и коррозии. Способ нанесения многослойного теплозащитного покрытия на детали газотурбинного двигателя, включает нанесение основного металлического жаростойкого подслоя и нанесение методом плазменного напыления дополнительного металлического жаростойкого подслоя и верхнего керамического теплозащитного слоя. Основной металлический жаростойкий подслой наносят методом высокоскоростного газопламенного напыления толщиной 20-150 мкм из сплава системы MCrAlY, в котором M=Ni, Со, Fe. Дополнительный металлический жаростойкий подслой наносят из сплава системы MCrAlY, в котором M=Ni, Со, Fe, толщиной 10-50 мкм. Верхний керамический теплозащитный слой наносят из материала на основе оксида циркония, частично стабилизированного 6-8% по массе оксидом иттрия толщиной 120-750 мкм. Обеспечивается защита от воздействия высоких температур, эрозии и коррозии с помощью формирования долговечных теплозащитных покрытий. 1 пр.

Изобретение относится к защите лопаток паровых турбин от парокапельной эрозии. Способ включает нанесение на лопатку защитного покрытия. Покрытие наносят методом лазерной наплавки. Лазерную головку перемещают со скоростью линейной интерполяции Vi не более 0,05 м/с. Мощность лазерного излучения составляет (800-1200) Вт. Техническим результатом является получение по всему профилю входной кромки лопатки упрочненного слоя на длину не менее 1/3 от длины рабочей части пера без ухудшения аэродинамических характеристик лопатки. 2 ил.

Изобретение относится к способу получения защитного упрочняющего покрытия на деталях запорной арматуры. Напыление производят высокоскоростным газопламенным методом со скоростью перемещения горелки относительно обрабатываемой поверхности 0,5÷1,0 м/с. Наносимый порошковый материал содержит аморфную фазу. Напыление производят с поддержанием температуры поверхности 90±10°C путем создания дополнительного потока защитного газа в зоне напыления. В каждом слое горелку перемещают с шагом h. В каждом последующем слое горелку смещают на величину s относительно предыдущего слоя таким образом, чтобы h=1.8s÷2.2s. При этом достигается повышение срока службы защитного покрытия за счет увеличения уровня его коррозионной стойкости. 2 з. п. ф-лы, 2 ил.

Изобретение относится к многослойному теплозащитному покрытию на детали горячего тракта энергетических газотурбинных установок большой мощности. Многослойное теплозащитное покрытие включает основной металлический подслой, выполненный из сплава на основе никеля, верхний керамический теплозащитный слой и дополнительный металлический жаростойкий подслой между основным подслоем и керамическим слоем. Основной металлический подслой содержит 18…25% кобальта, 14…20% хрома, 11…14% алюминия и 0,1…0,7 иттрия. Верхний керамический теплозащитный слой выполнен из материала на основе диоксида циркония ZrO2, частично стабилизированного 6…8% по массе оксида иттрия Y2O3. Дополнительный металлический жаростойкий подслой выполнен из сплава на основе никеля, содержащего 18…25% кобальта, 14…20% хрома, 10…13% алюминия и 0,1…0,7 иттрия. Техническим результатом является защита от воздействия высоких температур, эрозии и коррозии с помощью формирования долговечных теплозащитных покрытий. 1 пр.
Изобретение относится к области машиностроения и может быть использовано при ремонте деталей паровых турбин. Состав присадочного материала в виде порошка для восстановления жаропрочных сталей характеризуется тем, что он содержит следующие компоненты при их соотношении, мас.%: Cr - 8-15, Si - 0,2-2,5, С - 0,01-0,18, Мо - 0,4-1,05, W - 0,4-1,2, V - 0,1-0,6, В - 0,01-2,0, Ni - 1-20, Fe - остальное, при этом суммарное значение Мо и W не превышает 1,0 мас.%. Снижается количество дефектов в наносимом покрытии и повышается эффективность ремонтных работ. 1 пр.
Изобретение относится к машиностроению, в частности к покрытиям для восстановления и упрочнения запорной и регулирующей арматуры. Покрытие для нанесения на приводные элементы запорной и регулирующей арматуры представляет собой двухслойную систему, состоящую из подслоя и основного слоя. Подслой представляет собой высоколегированную сталь, содержащую по массе: не более 18% хрома, не более 14% никеля, не более 3% молибдена, не более 0,1% углерода. Основной слой представляет собой материал, содержащий металлокерамическую фазу в матрице из сплава на основе никеля, содержащий по массе: не более 28% железа, не более 52% хрома в соединениях, никеля не более 15%, кремния 1,0…1,3%, бора 1,0…1,3%, углерода не более 0,8%. Повышается коррозионная стойкость покрытия, а также обеспечивается возможность противостоять образованию задиров на поверхностях, контактирующих с сальниковым уплотнением, что позволяет увеличить ресурс работы детали с покрытием. 1 пр.
Изобретение относится к порошковой металлургии, в частности для получения уплотнительного покрытия методом газотермического напыления. Может использоваться при производстве паровых или газовых турбин для обеспечения стабильности зазоров в сопряженных элементах проточной части турбины. Уплотнительное покрытие для модификации элемента статора энергетической турбины содержит, мас.%: нитрид бора - 2-5, поливиниловый спирт - 7-10, стабилизированный оксидом иттрия диоксид циркония системы ZrO2-7-9% Y2O3 - остальное до 100%. Соотношение содержания нитрида бора к содержанию поливинилового спирта составляет 1:2. Обеспечивается повышение качества покрытия, высокая пористость без расслоений и трещин в покрытии. 1 табл., 2 пр.

Изобретение относится к области химии

Изобретение относится к установке для газопламенного напыления наноструктурированного покрытия и может быть использовано для упрочнения поверхностей изделий

Изобретение относится к способам получения наноструктурированных покрытий, упрочняющих поверхность изделий, с использованием методов газотермического напыления, в частности высокоскоростного газопламенного напыления
Изобретение относится к машиностроению и может быть использовано в узлах трения, работающих в сложных условиях, например при создании погружных центробежных насосов для добычи нефти, предназначенных для работы в скважинах с высоким содержанием механических примесей в пластовой жидкости

 


Наверх