Патенты автора Малыхин Игорь Александрович (RU)

Установка электроцентробежных насосов с погружным электродвигателем в герметичном кожухе охлаждения относится к нефтедобывающей промышленности и может быть использована для защиты оборудования в скважине от перегрева в процессе добычи нефти, снижения вредного влияния попутного газа. Технический результат, увеличение срока межремонтной безаварийной работы УЭЦН достигается тем, что ЭЦН устанавливают над герметичным кожухом с ПЭД. Входной модуль ЭЦН размещают вверху герметичного кожуха над ПЭД. Кольцевой зазор между корпусом входного модуля ЭЦН, снабженного герметизирующей жилы кабеля питания кабельной манжетой, и внутренней поверхностью кожуха герметизируют. Входной модуль ЭЦН скреплен с кабельной манжетой, охватывающим их герметизирующим кольцом, перекрывающим кольцевой зазор между внутренней поверхностью кожуха и входным модулем с прикрепленной кабельной манжетой, что позволяет удерживать рабочее давление до 50 атм. Конструкция позволяет обеспечить эффективное функционирование системы охлаждения оборудования, исключает забор газожидкостной смеси через герметизированное соединение кожуха и входного модуля и кабеля питания, что увеличивает межремонтный срок безаварийной работы установки. 3 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для снижения забойного давления на пласт либо поднятия динамического уровня над приемом насоса в скважинах с низким динамическим уровнем, снятием избыточного давления газа в затрубном пространстве нефтяной скважины при эксплуатации электроцентробежными, электровинтовыми, электродиафрагменными и штанговыми глубинными насосами путем отбора газа из затрубного пространства низкодебитной скважины при помощи струйного насоса, рабочим потоком которого служит жидкость, поднимаемая электроцентробежными, электровинтовыми и электродиафрагменными насосами высокодебитной скважины, по байпасным линиям и закачки его в выкидной коллектор. Обеспечивает повышение эффективности технологии добычи пластового флюида в низкодебитных скважинах с большим газовым фактором и в случае поломки оборудования не оказывает влияния на работу высокодебитной скважины ввиду оперативного переключения на штатный режим. Сущность изобретения заключается в том, что при использовании способа снижения давления газа в затрубном пространстве низкодебитных скважин, в скважинах одного куста, оборудованных электроцентробежными, электровинтовыми, электродиафрагменными и штанговыми глубинными насосами, через дополнительный тройник и задвижку установленными между центральной и буферной задвижками устьевой запорной арматуры высокодебитной скважины, проведена байпасная линия подвода скважинной жидкости, параллельная линии отбора скважинной жидкости, на которой установлен струйный насос, камера разрежения которого соединена с затрубным пространством низкодебитной скважины, оборудованной, в том числе, штанговым глубинным насосом, отдельной линией, содержащей обратный клапан. Выход струйного насоса перед линейной задвижкой соединен с линией отбора скважинной жидкости через обратный клапан. Рабочим потоком струйного насоса при применении данного способа служит жидкость, поднимаемая электроцентробежными, электровинтовыми и электродиафрагменными насосами высокодебитной скважины. Регулирование работы струйного насоса осуществлено изменением давления на его входе путем регулирования проходного сечения в штуцерной камере, либо угловой задвижке, врезанной в линию отбора скважинной жидкости, либо изменением частоты вращения погружного электродвигателя высокодебитной скважины, либо подбором количества секций электроцентробежных, электровинтовых и электродиафрагменных насосов высокодебитной скважины для создания требуемого напора. При этом происходит снижение избыточного давления газа в затрубном пространстве низкодебитной скважины посредством отбора газа из затрубного пространства нефтяной скважины и закачки его в линию отбора скважинной жидкости. На обеих входных линиях струйного насоса установлены аварийные электромагнитные клапаны, а в байпасную линию подвода прокачиваемой жидкости - пробоотборник для подачи метанола с целью исключения гидратных пробок. Давление в линиях контролируется манометрами. Для контроля уровня в затрубном пространстве низкодебитной скважины установлен автоматический уровнемер. Данные от датчиков поступают на станцию управления для контроля и автоматического управления работой оборудования и аварийных электромагнитных клапанов. 1 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для снижения забойного давления на пласт либо поднятия динамического уровня над приемом насоса в скважинах с низким динамическим уровнем. Предлагается способ снижения давления газа в затрубном пространстве добывающих нефтяных скважин от системы поддержания пластового давления, при котором установлен струйный насос, камера разрежения которого соединена с затрубным пространством добывающей нефтяной скважины отдельной линией, а выход струйного насоса через задвижку соединен с линией отбора скважинной жидкости добывающей скважины перед линейной задвижкой. При этом рабочим потоком струйного насоса служит вода из высоконапорного водовода нагнетательной скважины системы поддержания пластового давления. От устьевого участка высоконапорного водовода нагнетательной скважины через дополнительную задвижку проводят байпасную линию подвода воды, на которой устанавливают струйный насос. Регулирование работы струйного насоса осуществляют изменением давления на его входе путем регулирования проходного сечения в штуцерной камере для создания требуемого напора. При этом снижают избыточное давление газа в затрубном пространстве добывающей нефтяной скважины посредством отбора газа из затрубного пространства нефтяной скважины и закачки его в линию отбора скважинной жидкости. Техническим результатом является повышение эффективности технологии снятия избыточного давления газа из затрубного пространства добывающих нефтяных скважин. 1 ил.

Изобретение относится к нефтяной и газовой промышленности, а именно к скважинным фильтрам, устанавливаемым автономно в интервал перфорации для очистки добываемого продукта от механических примесей, и может быть использовано для защиты глубинных скважинных насосов от засорения механическими примесями и пересыпания забоя и интервала перфорации скважины. Технический результат - повышение эффективности и надежности эксплуатации нефтяных и газовых скважин, оборудованных глубинными насосами, за счет исключения вывода из эксплуатации скважин по причине присыпания автономного фильтра проппантом и механическими примесями в интервале перфорации в процессе эксплуатации и невозможности его извлечения. По способу в интервале или интервалах перфорации напротив одного и более продуктивных пластов устанавливают компоновку с фильтром или фильтрами для очистки добываемого продукта от механических примесей и пакерами или уплотнительными манжетами сверху и снизу каждого фильтра. Фильтр оборудуют предохранительным клапаном, срабатывание которого обеспечивают при заполнении фильтра проппантом и механическими примесями от перепада давления внутри и снаружи фильтра. Пластовую жидкость пропускают на прием глубинного насоса мимо фильтра по каналу в предохранительном клапане, открывающемуся от перепада давления. Далее в скважину спускают центробежный или другого типа глубинный насос и производят работу по добыче пластовой жидкости по штатной технологии. При этом автономные фильтры, а также пакеры или уплотнительные манжеты выполняют из легкоразбуриваемых, растворимых в кислотах и/или щелочах материалов, например алюминия или алюминиевых сплавов. При невозможности извлечения компоновки с для замены фильтров или промывки забоя осуществляется разбуривание автономного фильтра или фильтров, пакеров или уплотнительных манжет. При возникновении осложнений с разбуриванием в скважину закачивают кислоту или щелочь в зависимости от выбранного материала автономного фильтра и пакеров или уплотнительных манжет. В обоих случаях проппант, механические примеси, остатки разбуренных частей компоновки, производные химической реакции помещают в зумпф скважины, откуда их извлекают по штатной технологии. 1 ил.

Изобретение относится к способу герметичной установки пакера. Техническим результатом является повышение надежности герметизации пакера. Предлагается способ герметичной установки пакера с кабельным каналом, при котором трубчатый проходной пакер содержит уплотнительные элементы с проставочными втулками, защищенные конусами, и кабельный канал для кабеля питания электроприводного насоса и/или электрических линий подключения дополнительного оборудования и приборов и линий закачки химических реагентов или отвода газа, герметизируемых в кабельном канале путем заливки компаундом. Монтаж скважинного оборудования включает пропускание силового кабеля через уплотнительные элементы пакера, конусы и проставочные втулки, расположенные в порядке сборки, установку пакера с пазом над электроприводным насосом на насосно-компрессорных трубах, заполнение паза в стволе пакера компаундом с последующим погружением в него силового кабеля, выдерживание компаунда до полного или частичного затвердевания и установку навесных элементов на ствол пакера. Над пакером установлен аварийный разъединительный узел для аварийного отсоединения насосно-компрессорных труб и кабеля при превышении нагрузки на срыв пакера. Пакер также содержит механический якорь осевого действия в нижней части для предотвращения несанкционированного срыва пакера. Или механический якорь осевого действия установлен отдельно над пакером. Или механический якорь осевого действия установлен отдельно под электроприводным насосом. Способ позволяет устанавливать пакер в колоннах малого диаметра и пропускать геофизические приборы и другое подземное оборудование. Уплотнительные элементы пакера выполнены из водонефтенабухающей резины и обеспечивают надежную герметизацию как самого пакера в эксплуатационной колонне, так и кабельного канала, имеющего неровности компаунда вдоль кабеля в канале ствола пакера и проседание компаунда в канале, за счет способности к самозалечиванию и восстановлению герметизирующих свойств водонефтенабухающей резины пакера. 1 ил.

Изобретение относится к нефтяной промышленности и может быть использовано в установках погружных электроцентробежных насосов с погружными электродвигателями в кожухе, перекачивающих из скважин газожидкостные смеси с высоким содержанием газа. Обеспечивает повышение эффективности и надежности эксплуатации погружного электроцентробежного насоса с погружным электродвигателем в кожухе для добычи нефти из скважин с высоким содержанием газа за счет разделения газожидкостной смеси и эффективного охлаждения погружного электродвигателя. В способе сепарации газа, совмещенном с охлаждением погружного электродвигателя, в скважинах с большим газовым фактором погружной электродвигатель с гидрозащитой, охлаждаемый перекачиваемой жидкостью, снабжен герметичным наружным кожухом, который закреплен на нижнем фланце электроцентробежного насоса и гидравлически соединен с полостью колонны труб хвостовика. В кожухе погружного электродвигателя расположен газосепаратор, который соединен с входным модулем или выполнен совмещенным с входным модулем. На корпусе газосепаратора при помощи разрезной упорной обоймы размещен уплотнительный элемент с каналом для прохождения кабеля питания электроприводного насоса и/или электрических линий подключения дополнительного оборудования и приборов и линий закачки химических реагентов или отвода газа, разделяющий в кожухе полость входа пластовой жидкости с попутным газом во входной модуль и газосепаратор, и полость для выхода газа из газосепаратора. В кожухе выполнены отверстия для выхода газа из этой полости в межтрубное пространство. Происходит подвод газожидкостной смеси из хвостовика в кожух и далее во входной модуль и газосепаратор, эффективное охлаждение погружного электродвигателя потоком, закручивание потока газожидкостной смеси, разделение потока с последующим отводом отсепарированного газа в межтрубное пространство и подача дегазированной жидкости в электроцентробежный насос. 1 ил.

Изобретение относится к нефтяной промышленности и может быть использовано в скважинах с повышенным давлением попутного газа в затрубном пространстве и низким динамическим уровнем. Технический результат - повышение эффективности снижения избыточного давления попутного нефтяного газа в затрубном пространстве нефтяной скважины, повышение эффективности работы газонефтяного оборудования и увеличение добычи нефти. По способу на устьевой запорной арматуре через дополнительный тройник и отсекающую задвижку, установленные между тройником манифольдной задвижки и лубрикаторной задвижкой устьевой запорной арматуры скважины, параллельно основной гидравлической линии отбора скважинной жидкости монтируют байпасную линию. На ней устанавливают манометр и струйный аппарат. Камеру смешения этого аппарата соединяют с затрубным пространством скважины. В качестве рабочего потока для работы струйного аппарата используют жидкость, поднимаемую на поверхность насосом. В качестве насоса применяют электроцентробежный, или электровинтовой, или электродиафрагменный, или вентильный насос. Каждый из них имеет возможность регулирования частоты вращения вала погружного электропривода при различных режимах работы, изменять подачу и напор. При снижении давления в затрубном пространстве скважины и повышении динамического уровня в скважине увеличивают производительность погружного глубинного насоса за счет увеличения частоты вращения вала погружного электропривода. В конфузоре струйного аппарата создают высокоэнергетический поток скважинной жидкости, за счет которого в камере смешения струйного аппарата создают разрежение. Газ из затрубного пространства смешивают с этим потоком и через диффузор нагнетают в линию отбора скважинной жидкости. Поток скважинной жидкости по основной линии устьевой запорной арматуры перекрывают манифольдной задвижкой либо электромагнитным, либо механическим клапаном. На основной линии устьевой запорной арматуры устанавливают штуцерную камеру либо задвижку для регулирования давления на буфере. При этом регулирование работы глубинного насосного оборудования и струйного аппарата осуществляют изменением проходного сечения в конфузоре и диффузоре струйного аппарата, а также изменением частоты вращения вала погружного электропривода. На байпасной линии после струйного аппарата устанавливают дополнительную отсекающую задвижку и пробоотборник. Давление в линиях контролируют манометрами и датчиками давления, обеспечивающими возможность передачи данных на станцию управления. Давление на приеме насоса контролируют датчиками блока телеметрии, установленного на погружном электроприводе. Данные от датчиков передают на станцию управления и на пульт диспетчера для контроля и автоматического управления работой оборудования и электромагнитным клапаном. 1 ил.

Изобретение относится к погружным насосным установкам для эксплуатации скважин с большим расстоянием от погружного насоса до интервала перфорации, в том числе с большим газовым фактором. Технический результат – повышение эффективности технологии добычи пластового флюида в горизонтальных скважинах. Между электроцентробежным насосом и входным модулем устанавливают секцию мультифазного насоса. Погружной электродвигатель с гидрозащитой, охлаждаемый перекачиваемой жидкостью, снабжают наружным герметизирующим кожухом. Кожух герметично соединен с входным модулем электроцентробежного насоса и выполнен с возможностью изолирования приема насоса от межтрубного пространства и гидравлического соединения его с полостью колонны труб хвостовика, герметично соединенного с нижней частью герметичного кожуха. В скважине, ниже глубины установки электроцентробежного насоса в герметичном кожухе, на якоре-трубодержателе, содержащем полированную втулку, устанавливают хвостовик из насосно-компрессорных труб. Длину хвостовика подбирают таким образом, чтобы расстояние от головы хвостовика с якорем-трубодержателем и полированной втулкой до технологически допустимой глубины установки электроцентробежного насоса составляло 10-50 м. Хвостовик может быть комбинированным и в горизонтальной части скважины выполнен из легкоразбуриваемых материалов, например стеклопластика или алюминия, с аварийно-разъединительным узлом между его частями, для разъединения в аварийных ситуациях и возможности разбуривания. К герметичному кожуху электроцентробежного насоса присоединен отдельный хвостовик из насосно-компрессорных труб длиной 10-50 м. Этот хвостовик в нижней части содержит ниппель для герметичного соединения с полированной втулкой якоря-трубодержателя. Корпус якоря-трубодержателя не имеет плотного прилегания к внутренней поверхности эксплуатационной колонны за исключением плашек и свободно пропускает скважинную жидкость и газ в зазоре между корпусом и стенками эксплуатационной колонны. Собранную компоновку спускают в скважину до глубины установки якоря-трубодержателя. Разгрузкой производят герметичную стыковку хвостовика с ниппелем в полированной втулке якоря-трубодержателя. Запускают скважину в работу с обеспечением поступления жидкости через хвостовик горизонтальной части скважины, хвостовик, присоединенный к якорю-трубодержателю, хвостовик с ниппелем, внутреннюю полость герметичного кожуха, входной модуль и мультифазный насос в электроцентробежный насос. 1 ил.

Изобретение относится к нефтяной промышленности и может быть использовано в установках погружных электроцентробежных насосов с погружными электродвигателями в кожухе, перекачивающих из скважин газожидкостные смеси с высоким содержанием газа. Обеспечивает повышение эффективности и надежности эксплуатации погружного электроцентробежного насоса с погружным электродвигателем в кожухе для добычи нефти из скважин с высоким содержанием газа. Согласно способу сепарации газа погружного электроцентробежного насоса с погружным электродвигателем в кожухе, в скважинах с большим газовым фактором погружной электродвигатель с гидрозащитой, охлаждаемый перекачиваемой жидкостью, снабжен наружным герметичным кожухом, который герметично соединен с входным модулем электроцентробежного насоса и выполнен с возможностью изолирования приема насоса от межтрубного пространства. Ниже кожуха погружного электродвигателя расположен газосепаратор, который герметично соединен с нижней частью герметичного кожуха с возможностью передачи крутящего момента с вала погружного электродвигателя на вал газосепаратора и гидравлически соединен с полостью колонны труб хвостовика. При осуществлении способа происходит подвод газожидкостной смеси в газосепаратор, закручивание потока газожидкостной смеси, разделение потока с последующим отводом отсепарированного газа в затрубное пространство и подача дегазированной жидкости в герметичный кожух погружного электродвигателя с гидрозащитой и входной модуль электроцентробежного насоса. 1 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для отделения газа от жидкости при добыче пластового флюида посредством установок электроцентробежных насосов из горизонтальных скважин, скважин с большим углом отклонения от вертикали, с большим газосодержанием. Технический результат заключается в повышении эффективности технологии добычи пластового флюида за счет отделения газа от жидкости, стабилизации работы оборудования, устранении скопления газа и возможности захвата его электроцентробежным насосом. Гравитационный сепаратор для горизонтальных скважин включает корпус, содержащий перфорационные отверстия, в котором во втулках, расположенных в переводниках корпуса и поджатых гайками, установлены свободно вращающиеся эксцентричные переводники, между которыми в нижней части, где находится центр тяжести, установлен патрубок. Эксцентричные переводники под действием смещенного центра тяжести обеспечивают расположение патрубка всегда ближе к нижней по горизонтали стенке корпуса. В патрубке выполнены перфорационные отверстия, расположенные в одной плоскости, совмещенной с центром тяжести эксцентричных переводников. В переводник корпуса верхний завернута муфта для соединения с хвостовиком, а в переводник корпуса нижний – заглушка. При заборе пластового флюида через корпус устройства жидкость из нижней части корпуса через перфорационные отверстия в патрубке поступает в хвостовик для подачи на прием погружного электроцентробежного насоса, заключенного в герметичный кожух, а газ выходит через верхние перфорационные отверстия корпуса в эксплуатационную колонну горизонтального ствола скважины. 1 ил.
Изобретение относится к водоподготовке. Способ электрохимической подготовки свободнодисперсных систем, в том числе воды для питьевого и технического водообеспечения, реализуется за счет размещения в потоке воды для питьевого и технического водообеспечения, имеющей ионную электропроводимость второго рода, как в электроактивной среде электродов, обладающих по отношению к ней поляризуемостью, с созданием разности потенциалов на электродной паре за счет соотношения электродных площадей, не равного 1, и посредством создания импеданса на электродной паре или на электродных парах, с необходимостью поддержания разности потенциалов на ней или на них, не равной 0 В. Технический результат заключается в интенсификации фазоразделяющих процессов и в снижении окислительно-восстановительного потенциала воды.
Изобретение относится к гидрометаллургии благородных металлов. Электрохимическая переработка золотосодержащего сплава включает его анодное растворение с последующим восстановлением золота на катоде с использованием электролита. В качестве электролита используют сернокислотный раствор нитрата аммония и хлорида натрия. Способ позволяет получить золото с высокой степенью чистоты из анодного материала различного состава.

Изобретение относится к области транспортировки нефти и нефтепродуктов с помощью трубопроводов. Способ получения реагента для снижения гидродинамического сопротивления потока жидких углеводородов в трубопроводах включает полимеризацию альфа-олефинов С6-С14 в присутствии катализатора и активатора катализатора. Причем полимеризацию альфа-олефинов С6-С14 проводят в среде мономера с добавлением 0,1-5 мас.% насыщенного алициклического углеводорода состава С8-С32 и насыщенного алифатического углеводорода состава С6-С18 при конверсии по мономеру 96,0-99,5 мас.%. При этом в качестве катализатора применяют микросферический трихлорид титана, а в качестве активатора катализатора – смесь с массовым соотношением от 1:10 до 10:1 диэтилалюминий хлорида и триизобутилалюминия. После этого получают полимер с молекулярной массой более 107 а.е.м. с узким молекулярно-массовым распределением не более 1,5 с заданным соотношением компонентов. Далее полимер измельчают. Обеспечивается получение реагента для снижения гидродинамического сопротивления потока жидких углеводородов в трубопроводах при высоких значениях конверсии исходного сырья и высоком содержании фракций полимера, проявляющих противотурбулентный эффект. 5 з.п. ф-лы, 1 табл., 8 пр.

Изобретение относится к области трубопроводного транспорта углеводородных жидкостей. Противотурбулентная присадка с антикоррозионными свойствами содержит сверхвысокомолекулярный полимер альфа-олефинов, продукт конденсации высших аминов с числом атомов углерода 6-30 со степенью оксиалкилирования 2-50 при использовании в качестве оксиалкилирующего агента эпоксисоединения с числом атомов углерода 2-6 с двухосновной органической кислотой с числом атомов углерода 3-9, солвент. В качестве солвента используют смесь линейных и разветвленных алифатических одноатомных и многоатомных спиртов и/или эфиров с числом атомов углерода 1-15. Технический результат - снижение гидравлического сопротивления в магистральном трубопроводе и, как следствие, увеличение его пропускной способности с одновременной защитой от коррозии внутренней поверхности магистрального трубопровода и сопряженного с ним оборудования, используемого для транспортировки углеводородных жидкостей. 1 з.п. ф-лы, 1 табл., 25 пр.

Изобретение относится к области добычи углеводородов, а именно к погружным насосным установкам для эксплуатации скважин в скважинах с негерметичной эксплуатационной колонной либо в скважинах для одновременно-раздельной добычи с большим газовым фактором. Технический результат - повышение эффективности добычи пластового флюида из скважин с негерметичной эксплуатационной колонной. В скважине ниже негерметичного участка эксплуатационной колонны либо над верхним интервалом перфорации устанавливают пакер, либо двухпакерную компоновку. Между электроцентробежным насосом и входным модулем устанавливают секцию мультифазного насоса. Погружной электродвигатель с гидрозащитой, охлаждаемый перекачиваемой жидкостью, снабжают наружным герметизирующим кожухом, который герметично соединяют с входным модулем электроцентробежного насоса и выполняют с возможностью изолирования приема насоса от межтрубного пространства и гидравлического соединения его с полостью колонны труб с отсекающим пакером ниже насоса. К герметичному кожуху присоединяют хвостовик из насосно-компрессорных труб. Собранную компоновку спускают в скважину до глубины установки верхнего пакера или двухпакерной компоновки. После этого разгрузкой производят герметичную стыковку хвостовика с пакером. Запускают скважину в работу с обеспечением поступления жидкости из-под пакера через хвостовик, внутреннюю полость герметизирующего кожуха, входной модуль и мультифазный насос в электроцентробежный насос. Дополнительно под кожух может быть установлен фильтр от механических примесей. С помощью мультифазного насоса гомогенизируют и частично сжимают газожидкостную смесь, увеличивают рабочий интервал подач и величину предельного содержания газа в газожидкостной смеси а также величину напора, повышает давление на входе электроцентробежного насоса до уровня, обеспечивающего его устойчивую работу. 1 ил.

Изобретение относится к нефтегазовой промышленности. Для электрохимической подготовки закачиваемой в нефтегазоносный пласт жидкости используют электродные пары с соотношением площадей, не равным 1, размещенные в разных корпусах из электроизоляционных материалов. Создают на электродных парах разность потенциалов за счет поляризации прокачиваемой через них жидкости или за счет подачи на них разности потенциалов от источника питания постоянного тока, при котором основная часть электрической мощности расходуется не на инициирование электролизных процессов, а на изменение поляризационной составляющей прокачиваемой через электродные пары жидкости. Электрическую нагрузку подключают в любой последовательности ко всем или к одной из электродных пар, что позволяет поддерживать потенциал, наводимый на электродной паре, не равным 0 В. Изобретение обеспечивает изменение сорбционной емкости нефтегазоносного коллектора и нефтегазоотдачи пласта по факту изменения коэффициента нефтеизвлечения на фоне минимизации любого типа реагентного вмешательства в реликтовую составляющую нефтегазоносного пласта. 1 ил.

Изобретение относится к области трубопроводного транспорта нефти и нефтепродуктов. Описан способ получения реагента для снижения гидродинамического сопротивления потока жидких углеводородов в трубопроводах полимеризацией альфа-олефинов C6-C14 в присутствии катализатора и активатора катализатора. Полимеризацию альфа-олефинов C6-C14 проводят в среде мономера с добавлением насыщенного алифатического углеводорода состава C6-C14 при конверсии по мономеру от 96,0 до 99,5 мас. %. В качестве катализатора используют микросферический трихлорид титана, а в качестве активатора катализатора смесь с массовым соотношением от 1:10 до 10:1 диэтилалюминий хлорида и триизобутилалюминия. Получают полимер с молекулярной массой более 107 а.е.м. с узким молекулярно-массовым распределением не более 1,5 с заданным соотношением компонентов, мас. %. Далее полимер измельчают, получая товарную форму реагента. Технический результат - получение реагента с требуемыми свойствами при высоких значениях конверсии исходного мономерного сырья, снижение гидродинамического сопротивления потока жидких углеводородов в трубопроводах, увеличение пропускной способности трубопровода, снижение затрат на транспорт. 5 з.п. ф-лы, 1 табл., 8 пр.

Изобретение относится к металлургии благородных металлов, в том числе золота, может быть использовано при переработке как низкопробного, так и высокопробного первичного и вторичного сырья с получением на каждой стадии выщелачивания высококонцентрированных продуктов. Сущностью способа является постадийный перевод в раствор различных металлов. Способ включает сернокислотное выщелачивание с последующим сернокислотным окислительным выщелачиванием в присутствии аммиачной селитры с последующим переводом в раствор золота путем кислотного хлорирования в присутствии разбавленной серной кислоты, аммиачной селитры и поваренной соли. Далее проводят получение золота и металлов из растворов. Способ позволяет проводить аффинаж без учета начального состава перерабатываемого материала, содержащего драгметаллы, с последовательным выведением их в раствор. Он обеспечивает снижение производственных затрат и экологической нагрузки, повышает эффективность извлечения конечного продукта. 1 ил.

Изобретение относится к устройствам генерации электроэнергии. Технический результат - увеличение эффективности (КПД) и упрощение процесса получения электрической энергии. Способ заключается в использовании поляризующих свойств свободнодисперсных систем как электроактивных сред с использованием электродной пары с различным соотношением площадей ≠1, размещенной в корпусе из электроизоляционных материалов. 1 ил.

Изобретение относится к нефтедобывающей промышленности и предназначено для извлечения из скважины насосно-компрессорных труб, обсадных и бурильных труб, внутрискважинного оборудования. Устройство включает ствол со сквозным каналом для протока скважинной жидкости с переводником в верхней части, имеющим внутреннюю присоединительную резьбу для навинчивания на колонну бурильных труб. Подпружиненный плашечный узел в нижней части труболовки приведен в рабочее положение пружиной. Переводник снизу оснащен ходовой резьбой для освобождения путем навинчивания упора. Упор снизу имеет зубья для фиксации на извлекаемых трубах или оборудовании. В упор вставлена пружина, удерживающая плашки через кожух в рабочем положении. Между упором и кожухом вставлено кольцо, предотвращающее отворот упора при спуске в скважину. Механизм освобождения упрощен до обычного резьбового соединения между переводником и упором. Соосное размещение плашек минимизирует поперечные нагрузки, изгибающие ствол, сохраняя исправность труболовки после применения. Повышается эффективность, надежность и безопасность извлечения труб и оборудования, упрощается механизм освобождения. 1 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к эксплуатации и ремонту скважин, и может использоваться для герметизации нарушений эксплуатационной колонны и обводненных пластов. Устройство включает верхний и нижний пакерующие элементы, на которых размещены уплотнительные манжеты, гидравлический посадочный инструмент со штоком, верхний и нижний конусные дорны, второй гидравлический посадочный инструмент, включающий ловитель, адаптер, расположенный между верхним и нижним пакерующими элементами, имеющий посадочное седло с бортиком, фаску и складывающееся кольцо, установленное в седле адаптера и имеющее свободный ход. Пакерующие элементы выполнены с возможностью их поочередного расширения, начиная с верхнего, в результате двух спуско-подъемных операций с поочередным применением двух гидравлических посадочных инструментов. Складывающееся кольцо выполнено с возможностью упора в фаску нижней части адаптера, имеющей меньший внутренний диаметр относительно верхней, при взаимодействии со вторым гидравлическим посадочным инструментом при его опускании и с возможностью последующего раскрытия сегментов кольца после упора его в бортик посадочного седла адаптера при подъеме второго гидравлического посадочного инструмента для обеспечения прохождения нижнего конусного дорна после расширения нижнего пакерующего элемента. Нижний пакерующий элемент содержит ловильный патрубок. Повышается эффективность и надежность установки пластыря, снижаются временные затраты. 4 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для герметизации нарушений эксплуатационной колонны. В извлекаемом резьбовом пластыре производят раздельную установку пакерующих элементов, на которых устанавливают уплотнительные манжеты, путем поочередного расширения пакерующих элементов, начиная с верхнего в результате двух спуско-подъемных операций с поочередным применением двух гидравлических посадочных инструментов. При первой спуско-подъемной операции выполняют установку верхнего пакерующего элемента. При движении штока гидравлического инструмента происходит дорнирование пакерующего элемента до срабатывания сигнала - падение давления. Далее производят подъем гидравлического посадочного инструмента с конусным дорном. При второй спуско-подъемной операции посадочный инструмент с ловителем проходит через расширенное отверстие верхнего пакерующего элемента. Ловитель заходит в ловильный патрубок нижнего пакерующего элемента, посадочный инструмент упирается в специальное складывающееся кольцо в седле адаптера, имеющее свободный ход. При нагрузке специальное складывающееся кольцо упирается в фаску нижней части адаптера, имеющей меньший внутренний диаметр относительно верхней, что обеспечивает надежный упор посадочному инструменту. После расширения нижнего пакерующего элемента происходит дорнирование нижнего пакерующего устройства до срабатывания сигнала - падение давления, уплотнительная манжета обеспечивает герметичность устройства и фиксацию. Гидравлический посадочный инструмент с конусным дорном и ловильным патрубком поднимают из скважины. При подъеме конусный дорн толкает специальное складывающееся кольцо, его сегменты раскрываются и укладываются в часть седла, имеющего увеличенный диаметр, обеспечивающий прохождение конусного дорна. Повышается надежность установки, ускоряется монтаж, увеличивается срок эксплуатации скважины. 4 ил.
Изобретение относится к устройствам для разобщения и герметизации нарушений скважины. Техническим результатом является повышение надежности пакера. Пакер имеет расширяемый патрубок с переводником, уплотнительные манжеты на корпусе расширяемого патрубка, цельный конусный дорн, центрирующую воронку, ловильный патрубок. На корпусе расширяемого патрубка выполнены насечки, исключающие скольжение уплотнительных манжет, при установке пакера применен стандартный гидравлический посадочный инструмент. Дорнирование расширяемого патрубка пакера осуществлено при помощи конусного дорна. 2 ил.

Изобретение относится к противоаварийному инструменту, используемому в области бурения и эксплуатации скважин. Технический результат - предотвращение аварийно-опасных осложнений при образовании сальника при подъеме оборудования, повышение надежности. Гидромеханический способ разъединения оборудования с одновременным разъединением электрических либо гидравлических линий включает скважинный разъединитель, состоящий из верхней и нижней частей, герметично вставленных друг в друга и зафиксированных стопорными элементами. Причем верхняя часть сборная, в ней при помощи стопорных элементов зафиксирован с возможностью хода полый шток, соединенный с колонной труб. При этом стопорные элементы выполняют в виде срезных элементов или упругих кольцевых элементов, расположенных в проточке. В верхней и нижней частях скважинного разъединителя выполняют сквозные отверстия для циркуляции жидкости, перекрытые в транспортном положении верхней частью. Герметизацию отверстий и полого штока обеспечивают уплотнительными элементами. Верхнюю часть скважинного разъединителя оснащают седлом для посадки шара, сбрасываемого с устья скважины. Разъединение электрических либо гидравлических или электрических и гидравлических линий осуществляют при надвижении верхней, оснащенной седлом для посадки шара, сбрасываемого с устья скважины, части на нижнюю часть скважинного разъединителя при помощи ножа, расположенного на одной из частей скважинного разъединителя, выполнением среза электрической либо гидравлической или электрической и гидравлической линии на выступе другой части при гидромеханическом разъединении верхней и нижней частей. После посадки бросового шара в седле верхней части скважинного разъединителя создают давление в колонне НКТ, достаточное для срезания срезных элементов. В нижней и верхней частях скважинного разъединителя предусмотрен паз для укладки электрической либо гидравлической линии электрическую либо гидравлическую линию закрепляют с помощью прижимов на верхней и нижней частях скважинного разъединителя. Причем в нижней части скважинного разъединителя паз заканчивается выступом, на котором осуществляют разъединение электрической либо гидравлической, или электрической и гидравлической линии с сохранением крепления их к верхней и нижней частям разъединенного оборудования. Нож закрепляют на верхней части скважинного разъединителя, либо выступ располагают на верхней части скважинного разъединителя, а нож закрепляют на нижней части. 1 ил.

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при проведении внутрискважинных работ в случаях, когда возникает необходимость разъединения одной части оборудования от другой и разъединения электрических либо гидравлических линий с сохранением крепления их к оборудованию. Технический результат - одновременное разъединение электрических либо гидравлических линий с сохранением крепления их к верхней и нежней частям разъединенного оборудования, предотвращение аварийно-опасных осложнений при образовании сальника из свободно свисающих линий при подъеме оборудования. Устройство для разъединения оборудования включает верхнюю и нижнюю части, герметично вставленные друг в друга и зафиксированные. Устройство выполнено с возможностью одновременного разъединения оборудования и электрических либо гидравлических линий. Стопорные элементы выполнены в виде срезных штифтов, или в виде срезных колец, или упругих кольцевых элементов, расположенных в проточке, либо цанговых или пружинных фиксаторов. Герметизация обеспечивается уплотнительными элементами в виде колец, сальников, манжет. Электрическая либо гидравлическая линия закрепляется с помощью прижимов на верхней и нижней частях устройства для разъединения оборудования. В нижней и верхней частях предусмотрен паз для укладки электрической либо гидравлической линии. Разъединение электрических либо гидравлических линий осуществляется на кромках отверстий, выполненных соосно в состыкованных частях устройства для разъединения оборудования, через которые проходит электрическая либо гидравлическая линия. 1 з.п. ф-лы, 1 ил.

Изобретение относится к скважинному оборудованию и предназначено для использования при добыче пластового флюида или закачке рабочего агента в скважину, а также при одновременно-раздельной или поочередной эксплуатации нескольких продуктивных пластов и пропластков скважин многопластовых месторождений. Техническим результатом является упрощение конструкции, технологии изготовления, а также повышение надежности и эффективности работы компенсатора термобарических изменений длины колонны труб. Предложен компенсатор термобарических изменений длины колонны труб с гашением продольных колебаний, выполненный из нескольких труб, соединенных между собой муфтами и гайками, включающий корпус, состоящий из двух частей - нижней и верхней. Причем в корпусе нижнем расположен шток, на который насажена пружина компенсации хода колонны труб вниз, ограниченная с одной стороны муфтой со скользящей посадкой в корпусе нижнем, а с другой гайкой. Линейные размеры, ход пружины и рабочий зазор между муфтой со скользящей посадкой и нижней ограничивающей гайкой могут быть постоянными с запасом хода, либо выбраны из предполагаемого хода колонны труб вниз. При этом компенсатор соединен с колонной труб при помощи патрубка, который посредством муфты соединен со штоком, а далее на шток насажена пружина компенсации хода колонны труб вверх, ограниченная гайками, завернутыми в нижний и верхний корпусы. Для исключения заедания и западания пружин они могут снабжаться проставочными кольцами. В корпусе верхнем расположена муфта со скользящей посадкой, соединяющая шток с патрубком верхним, ход которой ограничен гайками, завернутыми в корпус верхний. Линейные размеры, ход пружины и рабочий зазор между муфтой со скользящей посадкой и верхней ограничивающей гайкой могут быть постоянными с запасом хода, либо выбраны из предполагаемого хода колонны труб вверх. В верхнюю гайку завернут патрубок соединительный, соединяющий через переводник компенсатор с колонной труб, при этом посредством сжатия пружин происходит компенсация хода колонны труб вниз и/или вверх с одновременным гашением колебаний. 1 з.п. ф-лы, 1 ил.

Изобретение предназначено для межфазного электрохимического перераспределения ионов в дисперсных системах и может быть использовано на предприятиях металлургической, машиностроительной, нефтяной, химической промышленности, на различных природных водных объектах. Способ включает поляризацию с использованием пары электродов с соотношением площадей, не равным 1, один из которых размещен в зоне максимального жидкостного протока, а второй - в зоне с минимальным жидкостным протоком; с последующей деполяризацией с использованием пары электродов с соотношением площадей, не равным 1, один из которых размещен в зоне максимального жидкостного протока, а второй - в зоне с минимальным жидкостным протоком. Каждая электродная пара каждого из процессов размещена в отдельных корпусах, выполненных из электроизоляционных материалов, соединенных друг с другом. Поляризацией управляют посредством задаваемой на электродной паре разности потенциалов от источника питания постоянного тока, при которой основная часть электрической мощности расходуется не на инициирование электролизных процессов, а на изменение поляризационной составляющей дисперсной системы. Деполяризацией управляют с начальным повышением разности потенциала на электродной паре с помощью источника питания постоянного тока до значений, характеризующихся началом электролизных процессов, с последующим отключением от источника питания постоянного тока и подключением к электродной паре электрической нагрузки. Способ осуществляют в режиме жидкостного протока с периодическим переключением на источник питания постоянного тока для удержания разности потенциалов в интервале, достаточном для осуществления процесса межфазного перераспределения ионов. Технический эффект - снижение или увеличение содержания ионов в различных фракционных составляющих дисперсных систем, низкое энергопотребление, низкое материалопотребление, высокая адаптированность к различным технологическим схемам. 3 ил., 2 пр.

Изобретение относится к ремонтно-изоляционному тампонажному составу на основе магнезиальных вяжущих веществ и может быть использовано в нефтяной и газовой промышленности, в процессах бурения и ремонта нефтяных, газовых и водяных скважин. Технический результат - создание ремонтно-изоляционного тампонажного состава на основе магнезиальных вяжущих веществ, который обладает следующими качествами: контролируемость и прогнозируемость времени схватывания тампонажного камня, с точностью до минуты, в различных баротермальных условиях от минусовых (минус 5°C) температур до 180°C; предотвращение потерь прочностных характеристик во время пребывания материала в условиях обводненности, обеспечение седиментационной устойчивости раствора. Ремонтно-изоляционный тампонажный состав на основе магнезиальных вяжущих веществ, содержащий оксид магния и воду, дополнительно содержит семиводный сульфат магния, гексаметафосфат натрия и нитрилотриметилфосфоновую кислоту при следующем содержании компонентов, мас.%: оксид магния 44,71-55.56, семиводный сульфат магния 13,33-22,47, вода 29,47-35,77, гексаметафосфат натрия 0,1-2,7, нитрилотриметилфосфоновая кислота 0,1-1,14. 7 ил., 1 табл.

Изобретение относится к области добычи углеводородов насосами различных типов с погружным электродвигателем. Cпособ обеспечивает герметичное разъемное соединение во входном модуле электрической линии погружного электродвигателя. Входной модуль насоса состоит из корпуса, выполненного без смещения оси относительно элементов кожуха, с фланцами для соединения с насосом и электродвигателем. Корпус модуля снабжен каналами для вала, для прохождения жидкости и отдельным каналом для размещения герметичной двухсторонней соединительной муфты электрического соединения электродвигателя, отверстиями для заполнения электроизоляционной жидкостью и для опрессовки соединения электрической линии. Герметичность соединения обеспечивают кольцевыми уплотнительными элементами и пробками с кольцевыми уплотнительными элементами или свинцовыми и медными прокладками или выполняют открытую полость для герметизации канала компаундом. Соединение электрической линии выполняют при помощи соединительной муфты ответными герметичными муфтами. Изобретение направлено на расширение сферы применения модуля, создание надежной конструкции герметичного соединения электрической линии, повышение ее защищенности. 1 ил.

Изобретение относится к способу электрохимического разделения несмешивающихся жидкостей и дисперсных систем, включающему: a) электрокоагуляцию-переполяризацию с использованием Al-анода и Cu-катода с размещением катода в зоне с минимальным жидкостным протоком и прохождением основного жидкостного протока через анод, с последующей электродеполяризацией с использованием C-анода и Cu-катода с размещением катода в зоне с минимальным жидкостным протоком и прохождением основного жидкостного протока через анод, с размещением каждой электродной пары в отдельных корпусах с межкорпусным соединительным устройством, выполненных из электроизоляционных материалов, с последующим гидродинамическим или гидростатическим разделением на фракции, причем допускается замена материала электродных пар и их конструкции, с изменением соотношения площадей анод/катод; b) управление электрокоагуляцией-переполяризацией осуществляется посредством задаваемой на электродной паре разности потенциалов подаваемой на электродную пару от источника постоянного тока или источника тока, работающего в импульсном режиме, при которой основная часть мощности расходуется не на инициирование электролизных процессов сопровождающихся анодным растворением, а на переполяризацию поверхностных зарядов; c) управление электродеполяризацией осуществляется с начальным повышением разности потенциала на электродной паре с помощью источника постоянного тока или источника тока, работающего в импульсном режиме, до значений, характеризующихся началом электролизных процессов с последующим отключением от источника питания и подключением к электродной паре нагрузки, соответствующей накапливающемуся на электродной паре заряду, и все управление осуществляется в режиме жидкостного протока. Использование настоящего способа позволяет повысить эффективность разделения несмешивающихся жидкостей, золей, суспензий, уменьшить энергозатраты и снизить материалоемкость. 1 з.п. ф-лы, 1 ил.

Изобретение относится к скважинным насосным установкам и может быть применено для управления скважиной. Способ включает отдельный спуск и установку в скважину колонны труб с пакерной системой для двух продуктивных пластов, состоящей из пакеров, межпакерной трубы, перфорированного патрубка и полированной втулки. Причем верхний пакер имеет направляющую воронку и максимально возможный диаметр проходного канала, достаточный для прохождения через него компоновки труб и приборов. Отдельный спуск колонны труб, оснащенной электропогружным насосом, хвостовиком, закрепленным в нижней части насосного оборудования, либо блока телеметрии, либо герметичного или негерметичного кожуха электропривода, представленным колонной труб либо штанг, на котором располагают как минимум один пакер, разделяющий потоки жидкости пластов, управляемые электрические либо электромеханические клапаны, регулирующие либо отсекающие поступление флюида из пластов в скважину, блоки датчиков контроля параметров работы пластов, которые размещают в интервале перфорации каждого продуктивного пласта либо над интервалом перфорации каждого продуктивного пласта. Причем датчики давления и температуры располагают под электромагнитными или электромеханическими клапанами, что дает возможность регулировать забойное давление и контролировать пластовое давление и температуру. Влагомеры и расходомеры располагают над электромагнитными или электромеханическими клапанами либо под электромагнитными или электромеханическими клапанами. Управление электромагнитными или электромеханическими клапанами и информационный обмен с блоками датчиков контроля параметров работы пластов осуществляют как по отдельной электрической линии, имеющей как минимум одну жилу, либо в составе четвертой жилы погружного кабеля питания электронасосов, либо по отдельной электрической линии вместо четвертой жилы погружного кабеля питания электронасосов, либо от «нулевой точки» электропогружного двигателя, либо от телеметрической системы погружного электродвигателя. При прохождении электрической линии по корпусу погружного электродвигателя может использоваться, а может не использоваться вставка из электрической линии малого диаметра, закрытая от механических повреждений защитным кожухом либо защитными протекторами, либо может закрываться, а может не закрываться от механических повреждений кожухом, установленным аналогично кожуху охлаждения электроцентробежного насоса. Хвостовик может быть оснащен, а может быть не оснащен аварийным разъединительным устройством с рассчитанными на определенную нагрузку срезными элементами, компенсатором хода термобарических изменений длины колонны труб. Исходя из полученных от датчиков данных, определяются оптимальные режимы одновременно-раздельной или поочередной эксплуатации продуктивных пластов скважины. Установка оптимальных режимов эксплуатации пластов и их последующая корректировка осуществляется действием блоков клапанов управления работой пластов в автоматическом или ручном режимах, автоматизированная система контроля работы скважинной системы позволяет вести дистанционный он-лайн-мониторинг системы разработки месторождения и вносить корректировки в режимы эксплуатации пластов скважины. Технический результат заключается в повышении эффективности управления скважиной при одновременно-раздельной эксплуатации. 4 ил.

Устройство разъемного герметичного электрического соединителя по типу «мокрый контакт» предназначено для электрического соединения кабельной линии в проводящей среде. Соединитель состоит из двух частей - верхней и нижней, Верхняя часть соединителя состоит из корпуса, сильфона с камерой, заполненной электроизоляционной жидкостью, контактной группы с необходимым количеством контактов, которую соединяют с кабельной линией с помощью геофизической приборной головки и защитного кожуха с возвратной пружиной и цанговым захватом, причем в нижней части корпуса располагают захватную цангу, полость которой заполняют электроизоляционной смазкой. Нижняя часть соединителя состоит из корпуса с канавкой для цангового захвата, в котором располагают блок контактных колец, которые соединяют с кабельной линией с помощью геофизической приборной головки, сильфона с камерой, заполненной электроизоляционной жидкостью, защитного герметичного кожуха, поджимаемого посредством пружины, и стержня с канавкой для цангового захвата. Между защитными герметичными кожухами и корпусами верхней и нижней частей соединителя устанавливают уплотнительные элементы. Технический результат - повышение надежности как электрического, так и механического герметичного соединения линии, в том числе при одновременно-раздельной эксплуатации нефтяных скважин. 1 ил.

Изобретение относится к нефтяной отрасли, в частности к технологическим процессам сбора, накопления, хранения и транспортировки нефти и нефтепродуктов в резервуарах различного назначения и конструктивного исполнения, и может быть использовано для круглогодичной очистки, преимущественно в зимний период при отрицательных температурах окружающей среды, нефтяных резервуаров от отложений, которые образуются на внутренней поверхности резервуара. Техническим результатом является создание безопасного и эффективного способа проведения работ по очистке нефтяных резервуаров от донных отложений с последующей их переработкой в условиях отрицательных температур окружающей среды. Процесс очистки включает разогрев резервуара теплоносителем, подачу размывающего агента, разжижение и перемешивание донных отложений, отвод и транспортировку разжиженных отложений на стадию переработки. При этом разогрев внутреннего объема резервуара и донных отложений до плюсовой температуры и поддержание положительной температуры в течение всего технологического процесса очистки осуществляют посредством подачи под давлением водяного пара с использованием парогенератора, а размыв, разжижение и перемешивание отложений осуществляют с использованием дистанционно управляемых роботизированных пушек, снабженных системой видеонаблюдения и освещения, помещаемых внутрь резервуара через нижние технологические люки. Отвод разжиженных отложений осуществляют насосами, установленными на самопередвижные установки с дистанционным управлением, также помещаемыми внутрь резервуара через нижние технологические люки. Размыв и перемещение осуществляют размывающим агентом в зависимости от температуры окружающей среды до 310о C под давлением от 1,0-10,0 МПа. Мойку кровли, стен, днища осуществляют посредством орбитальных моющих головок, размещаемых в люках кровли резервуара, на которые переключают подачу размывающего агента. Обогрев технологического оборудования, расположенного под каркасно-тентовыми сооружениями, самих сооружений и коммуникаций, посредством которых осуществляется подача теплоносителя для разогрева резервуара, размывающего агента и отвод, транспортировка разжиженных отложений на стадию переработки, осуществляют через паропровод посредством подачи под давлением водяного пара. При превышении нижнего уровня предела взрываемости осуществляют автоматическую подачу инертного газа в резервуар. 2 ил.

Изобретение относится к нефтяной отрасли, в частности к технологическим процессам сбора, накопления, хранения и транспортировки нефти и нефтепродуктов в резервуарах различного назначения и конструктивного исполнения. Техническим результатом является создание безопасного и эффективного способа проведения работ по очистке нефтяных резервуаров от отложений с последующей их переработкой. Очистка резервуаров включает подачу размывающего агента, разжижение и перемешивание донных отложений, отвод и транспортировку разжиженных отложений на стадию переработки. При этом размыв, разжижение и перемешивание отложений осуществляют с использованием дистанционно управляемых роботизированных пушек, снабженных системой видеонаблюдения и освещения, помещаемых внутрь резервуара через нижние технологические люки. Отвод разжиженных отложений осуществляют насосами, установленными на самопередвижные установки с дистанционным управлением, также помещаемыми внутрь резервуара через нижние технологические люки, а размыв и перемещение осуществляют размывающим агентом температурой в зависимости от температуры окружающей среды до 310°С под давлением от 1,0-10,0 МПа. Мойку кровли, стен, днища осуществляют посредством орбитальных моющих головок, размещаемых в люках кровли резервуара, на которые переключают подачу размывающего агента. При превышении нижнего уровня предела взрываемости осуществляют автоматическую подачу инертного газа в резервуар. 2 ил., 1 табл.

Изобретение относится к области добычи углеводородов и предназначено для перекачки жидкости погружными насосами. Входной модуль погружного насоса с герметичными соединениями состоит из корпуса, выполненного без смещения оси относительно элементов кожуха, с фланцами для соединения с насосом и погружным электродвигателем. Модуль имеет сквозной канал для вала насосной установки, каналы для прохождения жидкости. В корпусе модуля выполнен отдельный канал для размещения герметичной двухсторонней муфты электрического соединения погружного электродвигателя с кабельным удлинителем, отверстия для заполнения электроизоляционной жидкостью и для опрессовки соединения электрической линии. Модуль соединен с герметичным кожухом при помощи разрезной гайки с резьбой, расположенной в углублении входного модуля, направляющей шпонки и уплотнительных кольцевых элементов для герметизации соединения с герметичным кожухом электродвигателя. Кожух выполнен с возможностью перемещения при сборке и разборке по шпоночному пазу, что исключает взаимное вращение герметичного кожуха и входного модуля, скручивание силового кабеля в кожухе и его повреждение. Изобретение направлено на расширение сферы применения входного модуля в установках с погружными насосами, повышение ее защищенности и надежности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к погружным насосным установкам для эксплуатации скважин, в которых необходимо увеличить депрессию на пласт, не заглубляя погружную насосную установку, и/или с негерметичной эксплуатационной колонной. Обеспечивает повышение эффективности технологии добычи пластового флюида из скважин. Установка для эксплуатации нефтяной скважины включает колонну насосно-компрессорных труб, электропогружной кабель, электропогружной насос, у которого гидрозащита и погружной электродвигатель помещены в герметичный кожух, который герметично замыкается на корпусе входного модуля погружного насоса, хвостовик, состоящий из колонны труб, верхняя часть которого через переводник герметично соединена с нижней частью герметичного кожуха, а в нижней части хвостовика расположен патрубок с наружными уплотнительными элементами. Установка содержит как минимум один пакер, имеющий внутренний проходной канал с диаметром, позволяющим проходить через пакер на забой инструменту, оборудованию и приборам, не извлекая пакер. Герметизирующий узел для герметичного соединения с патрубком хвостовика находится либо в корпусе пакера, либо в устройстве ниже или выше пакера. 1 ил.

Настоящее изобретение относится к способу разложения образующегося после переработки утилизируемых эмульсионных смазочно-охлаждающих жидкостей скоагулированного и сфлокулированного шлама, где для снижения pH применяется фосфорная кислота, применение которой приводит к образованию сфлокулированного матерала, включает следующие стадии: дозированное внесение анионогенных ПАВ в процессе загрузки шлама с целью ускорения процессов, дегазации, экстракции; деполимеризация полифосфатных соединений осуществляется концентрированной серной кислотой, применение которой сопровождается дополнительным экзотермическим и водосвязующим эффектом, ускоряющим деполимеризацию; экстракция маслосодержащей органической фракции совместимыми с ней органическими растворителями как простыми, так и составными имеющими минимальную смесимость с водой; причем допускается производить деполимеризацию и экстракцию, с последовательной подачей каждого реагента и поэтапным выводом из реакционной емкости образующихся водной и органической фаз. Техническим результатом настоящего изобретения является обеспечение высокой эффективности разложения шлама, образующегося после переработки утилизируемых эмульсионных смазочно-охлаждающих жидкостей, значительное снижение экологически опасных и не технологичных отходов. 1 пр., 1 ил.

Изобретение относится к области добычи углеводородов и предназначено для перекачки жидкости погружными электроцентробежными и электровинтовыми насосами различных типов с погружным электродвигателем в герметичном кожухе или в других компоновках. Сущность изобретения: способ обеспечивает герметичное соединение кожуха погружного электродвигателя с входным модулем погружных насосов, который выполняют без смещения оси относительно элементов кожуха, с фланцами для соединения с насосом и погружным электродвигателем. Согласно изобретению герметичный кожух соединяют с входным модулем при помощи разрезной гайки, расположенной в углублении входного модуля, при этом кожух при сборке и разборке перемещается по шпоночному пазу, либо соединение герметичного кожуха с входным модулем выполняют при помощи промежуточного соединительного элемента с направляющими шпонками или с правой и левой резьбой, что исключает взаимное вращение герметичного кожуха и входного модуля, скручивание силового кабеля в кожухе и его повреждение. 8 ил.

Изобретение относится к нефтегазовой промышленности, а именно к способу разъединения внутрискважинного оборудования и электрических либо гидравлических линий с сохранением крепления их к оборудованию. Способ включает в себя использование скважинного разъединителя, состоящего из верхней и нижней частей, герметично вставленных друг в друга и зафиксированных стопорными элементами. При этом стопорные элементы выполняют в виде срезных или упругих кольцевых элементов. Герметизацию обеспечивают уплотнительными элементами. Разъединение электрических либо гидравлических линий осуществляют при помощи ножа, расположенного на одной из частей скважинного разъединителя. Электрическую либо гидравлическую линию закрепляют с помощью прижима на нижней либо на верхней и нижней частях скважинного разъединителя. В нижней части предусмотрен паз для укладки электрической либо гидравлической линии, заканчивающийся выступом, на котором происходит разъединение с сохранением крепления их к оборудованию и предотвращением аварийно-опасных осложнений при образовании сальника из свободно свисающих электрических и гидравлических линий при подъеме оборудования, либо выступ располагают на верхней части скважинного разъединителя. 1 ил.

Изобретение относится к области защиты от коррозии металлов, в частности к составам, обеспечивающим надежную защиту в средах, содержащих растворенный сероводород или углекислый газ, и обладающим высокой сорбционной активностью по отношению к металлическим поверхностям, и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности. Ингибитор коррозии пролонгированного действия для защиты нефтепромыслового и нефтеперерабатывающего оборудования содержит полимерное соединение - алкил- и оксиалкилполиамины, частично кватернизованные по атомам азота, неионогенное поверхностно-активное вещество и углеводородный растворитель - одноатомный спирт CnH2n+1OH, где n=1-4, при следующем соотношении компонентов, мас.%: полимерное соединение 5-30; ПАВ низкомолекулярное 5-20; растворитель остальное. В качестве поверхностно-активного вещества для защиты от сероводородной коррозии используют низкомолекулярное четвертичное аммониевое основание, а для защиты от углекислотной коррозии - сложный эфир непредельной дикарбоновой кислоты и спирта. Технический результат: снижение скорости коррозии в агрессивных средах, содержащих сероводород и углекислый газ. 2 н.п. ф-лы, 3 табл., 2 ил., 4 пр.

Изобретение относится к нефтехимической и химической промышленности. Описан способ получения противотурбулентной присадки с рециклом мономеров, способ получения противотурбулентной присадки, способ получения высших поли-α-олефинов для этих способов и противотурбулентная присадка на их основе. В способах используются в качестве осадителя полученного полимера вещества с температурой кипения выше температуры кипения исходного мономера не менее чем на 73°C. Технический результат - снижение потерь мономеров, уменьшение стоимости способов путем исключения возможности образования азеотропных смесей осадителя с мономерами с сохранением высокой степени чистоты возвратных мономеров при этом. 4 н. и 12 з.п. ф-лы, 1 ил., 2 табл., 20 пр.

Изобретение относится к скважинным насосным установкам и может быть применено для управления скважиной при одновременно-раздельной или поочередной эксплуатации нескольких продуктивных пластов. Способ включает отдельный спуск в скважину колонны труб с пакерной системой, оснащенной, по крайней мере, одним пакером, блоками датчиков контроля параметров работы пластов, оснащенными, по крайней мере, одним комплектом датчиков контроля параметров работы пластов, управляемых электрических, либо электромеханических клапанов регулирующих, либо отсекающих поступление флюида из пластов в скважину, либо, как минимум, для одного эксплуатируемого пласта, нижней части внутрискважинного электрически и механически соединяемого и разъединяемого блока «мокрый контакт», как минимум одной электрической линией связи управления, питания и передачи информации, которая соединяет датчики контроля работы пластов и управляемые электрические, либо электромеханические клапаны с нижней частью блока «мокрый контакт», установку пакерной системы в эксплуатационной колонне для разъединения эксплуатируемых пластов. Технический результат заключается в повышении эффективности автоматизирования системы контроля работы скважинной системы. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области катализа. Описан способ получения гранулированного катализатора крекинга, состоящий в смешении цеолита Y, глины и связующего с последующими формовкой, сушкой и прокалкой, в котором смешивают цеолит в виде окристаллизованной фазы или в составе смеси с аморфным алюмосиликатом и/или глиной, связующее, глину и отощающую добавку в массовом соотношении (25-40):(5-10):(40-50):(10-20), в качестве связующего используют оксихлорид алюминия, смесь формуют путем экструзии. Технический результат - повышение прочности катализатора. 5 з.п. ф-лы, 1 табл., 13 пр.

Изобретение относится к разделению неустойчивых нефтяных эмульсий и может использоваться при подготовке нефти и очистке сточных вод в нефтяной промышленности

 


Наверх