Патенты принадлежащие Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук (ИСВЧПЭ РАН) (RU)

Изобретение может быть использовано при производстве передающих и приемных антенн для терагерцевого диапазона частот (от 300 ГГц до 5 ТГц). Полупроводниковая структура для фотопроводящих антенн эпитаксиально выращена на подложке GaAs с кристаллографической ориентацией (111)А и состоит из чередующихся слоев нелегированного низкотемпературного LT-GaAs и высокотемпературного легированного кремнием GaAs:Si дырочного типа проводимости.

Использование: для создания материала фотопроводящих антенн. Сущность изобретения заключается в том, что материал содержит пленку LT-InGaAs, эпитаксиально выращенную при пониженной температуре на подложке InP, отличающийся тем, что используется подложка InP с кристаллографической ориентацией (n11)A, где n=1, 2, 3…; пленка LT-InGaAs легируется примесями с амфотерными свойствами (например, кремнием); выбирается соотношение потоков мышьяка и элементов III группы (галлия и индия) такое, чтобы выращенная пленка LT-InGaAs имела дырочный тип проводимости.

Использование: для создания РНЕМТ транзисторов. Сущность изобретения заключается в том, что наноразмерная структура с нанонитями из атомов олова, встроенными в кристалл GaAs включает монокристаллическую полуизолирующую вицинальную подложку GaAs (100) с углом разориентации 0.3°÷0.4° в направлении типа <011>, буферный нелегированный слой GaAs, дельта-легированный оловом слой и контактный легированный кремнием слой GaAs, дополнительно добавлен канальный слой InGaAs, спейсерный слой AlGaAs и барьерный слой AlGaAs, а двухмерный электронный газ, находящийся в канальном слое InGaAs, модулирован в виде квазиодномерных каналов.
Изобретение относится к фотопроводящим полупроводниковым материалам. Предложен фотопроводящий материал с высокой интенсивностью генерации терагерцового (ТГц) излучения.

Изобретение относится к электрофизическим способам определения степени релаксации барьерного слоя нитридной гетероструктуры и применяется для оценки качества кристаллической структуры, в которой наблюдается пьезоэлектрическая поляризация.

Изобретение относится к технологии формирования Т-образных металлических затворов транзисторов различного типа, предназначенных для работы в диапазонах СВЧ и выше, а также при создании монолитных интегральных схем.

Изобретение может быть использовано в приемных антеннах для терагерцевого диапазона частот (от 300 ГГц до 4 ТГц). Cтруктура представляет собой полупроводниковую эпитаксиальную многослойную структуру, выращенную на подложке GaAs с кристаллографической ориентацией (111)А, состоящую из чередующихся матричных слоев нелегированного GaAs, выращенных в низкотемпературном режиме, и функциональных слоев GaAs, выращенных в стандартном высокотемпературном режиме и легированных атомами Si.

Изобретение относится к способу формирования омических контактов к нитридным гетероструктурам по технологии вжигаемых омических контактов и может быть использовано при изготовлении полупроводниковых приборов с высокой степенью интеграции.

Изобретение относится к технологии формирования омических контактов к гетероструктурам AlGaN/GaN и может быть использовано при изготовлении полупроводниковых приборов, в частности полевых транзисторов СВЧ диапазона.

Изобретение может быть использовано для создания активного слоя в фотопроводящих антеннах-детекторах и генераторах электромагнитного излучения терагерцевого диапазона. Материал для фотопроводящих антенн согласно изобретению представляет собой пленку GaAs, эпитаксиально выращенную на подложке GaAs с кристаллографической ориентацией (111)А при пониженной температуре роста, легированную атомами кремния, причем соотношение потоков мышьяка и галлия при эпитаксиальном росте выбрано таким, чтобы большая часть атомов кремния являлась акцепторной примесью.
Изобретение относится к электронной технике и может быть использовано для изготовления монолитных интегральных схем, оперирующих в сантиметровом и миллиметровом диапазоне длин волн. Согласно изобретению предложена полупроводниковая транзисторная гетероструктура на подложке GaAs с модифицированным стоп-слоем AlxGa1-xAs.

Использование: для контроля технологии при изготовлении полупроводниковых метаморфных гетероструктур. Сущность изобретения заключается в том, что регистрируют кривые дифракционного отражения в режиме θ/2θ-сканирования от различных кристаллографических плоскостей, измеряют угловое положения пика от выбранной малой области эпитаксиального слоя с градиентом химического состава и вычисляют параметры решетки в различных направлениях на основе измеренных брэгговских углов, при эпитаксиальном росте слоя с градиентом химического состава в заранее произвольно выбранной малой области этого слоя формируется монокристаллический слой с однородным составом толщиной 50-100 нм, дающий отчетливый пик на кривых дифракционного отражения и не вносящий дополнительной упругой деформации.

Изобретение относится к устройствам СВЧ плазменной обработки материалов и может быть использовано при создании твердотельных приборов микро- и наноэлектроники, мощных дискретных твердотельных электронных приборов, в производстве подложек для электронных приборов, работающих в экстремальных условиях.

Изобретение относится к СВЧ плазменным устройствам для проведения процессов осаждения и травления слоев - металлов, полупроводников, диэлектриков и может быть использовано в технологических процессах создания полупроводниковых приборов с высокой степенью интеграции, работающих в экстремальных условиях.

Изобретение относится к СВЧ плазменным установкам для проведения процессов травления и осаждения слоев - металлов, полупроводников, диэлектриков при пониженном давлении и может быть использовано в технологических процессах создания полупроводниковых приборов с высокой степенью интеграции.

Изобретение относится в технологии производства пленок карбида кремния на кремнии, которые могут быть использованы в качестве подложек или функциональных слоев при изготовлении приборов полупроводниковой электроники, работающих в экстремальных условиях - повышенных уровнях радиации и температур.

Изобретение относится к лазерным методам резки пластин и может быть использовано в микроэлектронной промышленности для резки алмазных, карбидкремниевых, кремниевых и других подложек с изготовленными на них приборами.

Изобретение относится к наноразмерным полупроводниковым структурам, содержащим систему квазиодномерных проводящих каналов, используемых для изготовления приборов наноэлектроники и нанофотоники. Техническим результатом является увеличение концентрации электронов в активной области наноструктуры.
Наверх