Полевой транзистор на гетероструктуре

 

Использование: электронная техника. Сущность изобретения: изобретение обеспечивает улучшение линейности характеристик устройств на гетероструктурных полевых транзисторах и снижение модуляционных шумов этих устройств. В полевом транзисторе на гетероструктуре часть слоя полупроводникового материала, расположенная на расстоянии от затвора, превышающем 30 нм, выполнена с концентрацией легирующей примеси большей 31017 см-3 и поверхностной плотностью этой примеси большей 1012 см-2, а слой полупроводникового материала между упомянутой частью и затвором выполнен со средней концентрацией примеси 31017 см-3. 5 ил.

Изобретение относится к электронной технике, а именно к полевым транзисторам на гетероструктурах с селективным легированием (ПТ ГСЛ).

Известен ПТ ГСЛ, состоящий из высокоомной подложки, двух или более чередующихся слоев широкозонного и узкозонного материалов с согласованными (изоморфными) или несогласованными (псевдоморфными) кристаллическими решетками. На наружной поверхности полупроводниковой гетероструктуры расположены исток, сток и затвор. Последний образует с полупроводником барьер Шотки [1] (фиг. 1). Слой узкозонного материала не легирован, слой широкозонного материала легирован сильно (с концентрацией примеси 1018 см-3) с однородным распределением примеси по толщине слоя. Между сильнолегированным широкозонным и нелегированным узкозонным материалами расположен тонкий 1,0 5,0 нм слой чистого широкозонного материала (спейсер). Электроны, стремясь занять положение с минимальной потенциальной энергией, переходят с примесных атомов широкозонного полупроводника в узкозонный, образуя у границы гетероперехода потенциальную яму с двумерным электронным газом. Для увеличения крутизны расстояние между затвором и двумерным электронным газом (границей гетероперехода) делают минимальным (не более 40 нм). Такой транзистор обладает низким уровнем шума на сверхвысоких частотах (СВЧ) и широко используется для создания малошумящих усилителей и ряда других СВЧ-устройств [1] Одним из недостатков ПТ ГСЛ с однородным профилем легирования широкозонного материала является сильная зависимость крутизны (gm) и входной емкости (Cиз) от напряжения смещения на затворе (Uиз) [1] приводящая к зависимости коэффициента усиления от амплитуды СВЧ-сигнала, что ухудшает характеристики (коэффициент усиления, линейность) СВЧ-усилителей и других СВЧ -устройств.

Другим существенным недостатком известных ПТ ГСЛ является высокий уровень низкочастотного (НЧ) шума (на частотах ниже 1 МГц), ограничивающий их применение в СВЧ-генераторах и ряде других устройств, в которых он приводит к высокому уровню модуляционных, в том числе фазовых шумов.

Известен ПТ ГСЛ с неоднородным профилем легирования, принятый нами за прототип [2] В нем для увеличения поверхностной плотности электронов в потенциальной яме узкая часть широкозонного материала толщиной 1 нм легирована до концентрации 1019 см-3 (так называемый ПТ ГСЛ с - легированием). Однако в прототипе не реализован оптимальный профиль легирования активного слоя, обеспечивающий минимизацию зависимости входной емкости от напряжения Uиз и влияния флуктуаций концентрации и подвижности носителей тока в канале на параметры эквивалентной системы ПТ ГСЛ крутизну, входную и проходную емкость и др.

Техническим результатом от реализации изобретения будет улучшение линейности характеристик устройств на ПТ ГСЛ путем уменьшения входной емкости от напряжения на затворе и снижения модуляционных шумов СВЧ-устройств на ПТ ГСЛ путем уменьшения влияния флуктуаций концентрации и подвижности носителей тока в канале на параметры эквивалентной схемы ПТ ГСЛ.

Эти результаты достигаются тем, что в известной конструкции гетероструктурного полевого транзистора с селективным легированием, содержащей высокоомную подложку и по крайней мере один слой широкозонного и один слой узкозонного полупроводниковых материалов с согласованными и несогласованными кристаллическими решетками, а также исток, затвор и сток, расположенные на наружной поверхности полупроводникового материала, часть слоя полупроводникового материала, расположенная на расстоянии от затвора, превышающем 30 нм, выполнена с концентрацией легирующей примеси, большей 31017 см-3, и поверхностной плотностью этой примеси, большей 1012 см-2 (под поверхностной плотностью подразумевается количество легирующей примеси во всей толщине слоя, приходящееся на единицу поверхности и определяемое выражением: где N(y) зависимость концентрации легирующей примеси от расстояния до поверхности, a, b границы слоя [3]), а средняя концентрация легирующей примеси между упомянутой частью слоя полупроводникового материала и затвором не превышает 31017 см-3.

Выполнение слоя полупроводника между узкозонным материалом и затвором с предлагаемым профилем легирования (см. например, фиг.2) при определенных напряжениях на затворе обеспечивает существенное уменьшение зависимости крутизны и входной емкости по сравнению с прототипом, что обеспечивает улучшение линейности устройств на таких ПТ ГСЛ и приводит к снижению в них модуляционных шумов, основным источником которых является нелинейность входной емкости.

Изобретение поясняется чертежами.

На фиг. 1 дано схематическое изображение одного из вариантов выполнения полевого транзистора на гетероструктуре с селективным легированием, где показаны высокоомная подложка 1, нелегированный узкозонный материал 2, нелегированный широкозонный материал (спейсер) 3, сильнолегированный широкозонный материал 4, исток 5, затвор 6, сток 7.

На фиг.2 дан один из возможных профилей легирования предлагаемого транзистора, где ND концентрация доноров в активном слое, y -расстояние до поверхности.

На фиг.3 дана расчетная зависимость входной емкости Cиз (____) и крутизны gm (- - - -) от напряжения смещения на затворе Uиз для Al0,3Ga0,7As/GaAs ПТ ГСЛ с оптимизированными согласно перечисленным требованиям профилями легирования с длинами затвора L 0,5 мкм (кривая 1), 2 L 0,3 мкм (кривая 2), и ПТ ГСЛ с однородно легированным широкозонным материалом и длиной затвора L 0,5 мкм (кривая 3).

На фиг. 4 дана расчетная зависимость входной емкости Cиз (____) и крутизны gm (- - - -) от напряжения смещения на затворе Uиз для Al0,2Ga0,8As/In0,15Ga0,85As/GaAs ПТ ГСЛ с оптимизированными, согласно перечисленным требованиям, профилями легирования широкозонного материала при длине затвора L 0,3 мкм.

На фиг. 5 дан пример конкретной структуры ПТ ГСЛ, удовлетворяющей перечисленным выше требованиям. Высокоомная подложка (i-GaAs) 1, нелегированный GaAs 2, нелегированный Al0,3Ga0,7As 3, сильнолегированный слой Al0,3Ga0,7As с концентрацией доноров 1018 см-3 4, слой Al0,3Ga0,7As, легированный до ND 21017 см-3 5, исток 6, затвор 7, сток - 8.

Пример. Как пример конкретного исполнения ПТ ГСЛ, согласно перечисленным выше требованиям, можно предложить следующую конструкцию транзистора фиг.5, имеющую параметры гетероструктуры: полуизолирующая подложка из i-GaAs 1, нелегированный GaAs с концентрацией остаточных примесей Np 1015 см-3 2, нелегированный Al0,3Ga0,7As с концентрацией примеси <10 см-3 толщиной 3 нм 3, сильнолегированный слой Al0,3Ga0,7As с концентрацией доноров 1018 см-3 толщиной 15 нм 4, слой Al0,3Ga0,7As, легированный до ND 21017 см-3 толщиной 50 нм 5, исток 6, затвор 7, сток 8.

Формула изобретения

Полевой транзистор на гетероструктуре, содержащий высокоомную подложку и по крайней мере один слой широкозонного и один слой ускозонного полупроводниковых материалов с согласованными или несогласованными кристаллическими решетками, а также исток, затвор и сток, расположенные на наружной поверхности полупроводникового материала, отличающийся тем, что часть слоя полупроводникового материала, расположенная на расстоянии от затвора, превышающем 30 нм, выполнена с концентрацией легирующей примеси большей 3 1017 см-3 и поверхностной плотностью этой примеси большей 1012 см-2, а средняя концентрация легирующей примеси между упомянутой частью слоя полупроводникового материала и затвором не превышает 3 1017 см-3.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к электронной технике, преимущественно к производству МДП СБИС

Изобретение относится к аналоговой технике и может быть использовано в МДП-усилительных и коммутационных устройствах, предназначенных для функционирования при криогенных температурах

Изобретение относится к электронной технике, в частности к конструкции полевых транзисторов

Изобретение относится к полупроводниковым приборам и может быть использовано в радиотехнических, СВЧ-устройствах и т.д

Изобретение относится к гетероструктурам полупроводниковых приборов, главным образом полевых транзисторов

Изобретение относится к силовым вертикальным транзисторам, содержащим МОП-структуру, изготавливаемую с применением двойной диффузии, имеющим электроды истока (эмиттера) и затвора на одной поверхности подложки, а электрод стока (коллектора) - на противоположной поверхности подложки

Изобретение относится к области твердотельной электроники и может использоваться при создании устройств, предназначенных для усиления, генерирования и преобразования ВЧ- и СВЧ-колебаний

Изобретение относится к области полупроводниковой техники. Полупроводниковый прибор включает утоненную подложку из монокристаллического кремния р-типа проводимости, ориентированного по плоскости (111), с выполненным на ней буферным слоем из AlN, поверх которого выполнена теплопроводящая подложка в виде осажденного слоя поликристаллического алмаза толщиной, равной по меньшей мере 0,1 мм, на другой стороне подложки выполнена эпитаксиальная структура полупроводникового прибора на основе широкозонных III-нитридов, исток из AlGaN, затвор, сток из AlGaN, омические контакты к истоку и стоку, припой в виде слоя, включающего AuSn, медный пьедестал и фланец. При этом между истоком, затвором и стоком выполнен слой изолирующего поликристаллического алмаза. Изобретение обеспечивает повышение надежности полупроводникового прибора и увеличение срока его службы, а также позволяет упростить изготовление прибора с высоким значением теплоотвода от активной части. 2 н. и 1 з.п. ф-лы, 7 ил.

Изобретение относится к области полупроводниковой электроники. В предлагаемом приборе объединены три полевых транзистора в единую вертикальную структуру с каналами n- и p-типами проводимости, между которыми образуется электрический переход, при этом исток p-канала расположен напротив стока n-канала, а сток p-канала - напротив истока n-канала. Истоки каналов соединены между собой с помощью проводника и дополнительной области с n+-типом проводимости, на которой сформирован исток n-канала, а стоки каналов имеют отдельные выводы. В приборе может быть один затвор (трехэлектродный прибор - вариант 1) или два затвора (четырехэлектродный прибор - вариант 2), расположенных на другой (второй) боковой стороне каналов. Ток в каналах проходит в одном направлении и создает на переходе обратное напряжение, которое запирает каналы. Прибор может содержать более одной единичной структуры, при этом затворы являются общими для соседних структур. Изобретение позволяет уменьшить размеры, повысить быстродействие и увеличить ток и выходную мощность прибора. 3 з.п. ф-лы, 6 ил.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения. Мощный транзистор СВЧ с многослойной эпитаксиальной структурой содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты. Слой теплопроводящего поликристаллического алмаза имеет толщину 0,1-0,15 мм, а на поверхности эпитаксиальной структуры между истоком, затвором и стоком последовательно размещены дополнительный слой теплопроводящего поликристаллического алмаза, барьерный слой из двуокиси гафния и дополнительный барьерный слой из оксида алюминия. При этом барьерные слои из двуокиси гафния и оксида алюминия имеют суммарную толщину 1,0-4,0 нм, кроме того, они размещены под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости. Технический результат заключается в увеличении теплопереноса от активной области транзистора и минимизации утечек тока. 2 з.п. ф-лы, 4 ил.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов СВЧ-устройств различного назначения. Мощный транзистор СВЧ содержит базовую подложку из кремния, теплопроводящий поликристаллический слой алмаза, эпитаксиальную структуру на основе широкозонных III-нитридов, буферный слой, исток, затвор, сток и омические контакты. При этом базовая подложка из кремния выполнена толщиной менее 10 мкм, слой теплопроводящего поликристаллического алмаза имеет толщину по меньшей мере, равную 0,1 мм, а на поверхности эпитаксиальной структуры последовательно размещены дополнительный слой теплопроводящего поликристаллического алмаза и барьерный слой из двуокиси гафния толщиной 1,0-4,0 нм, который в области затвора размещен под затвором, непосредственно на эпитаксиальной структуре в виде слоя из твердого раствора AlGaN n-типа проводимости. Технический результат заключается в повышении выходной СВЧ-мощности, эффективном отводе тепла от активной области транзистора и минимизации утечек тока. 2 з.п. ф-лы, 4 ил.

Изобретение относится к способу получения циклопропановых производных фуллеренов общей формулы 2 путем нагревания немодифицированного фуллерена с тозилгидразоном в присутствии растворителя и основания. При этом процесс ведут с тозилгидразоном эфира α-кетоуксусной кислоты общей формулы 1 где в общих формулах 1 и 2 радикал R обозначает линейный или разветвленный алифатический радикал Cn, где n находится в пределах от 1 до 50; радикал R1 обозначает ароматический радикал С6; Fu представляет собой фуллерен С60 или фуллерен С70, или высший фуллерен С>70, или смесь фуллеренов С60 и С70 (суммарное содержание 95.0-99.999% по весу) и высших фуллеренов (С>70, содержание 0.001-5.0% по весу). Способ позволяет получать производные фуллеренов, содержащие в своей структуре сложноэфирную группу, непосредственно присоединенную к циклопропановому фрагменту на фуллереновой сфере, используя доступные эфиры α-кетоуксусной кислоты. Изобретение также относится к применению циклопропановых производных фуллеренов общей формулы 2 в качестве полупроводниковых материалов для электронных полупроводниковых устройств, материалов для органического полевого транзистора и материалов для органической фотовольтаической ячейки. 6 н.п. ф-лы, 13 ил., 3 пр.
Наверх