Способ вольтамперометрического определения п-крезола в водных растворах

 

Способ применим для контроля за содержанием п-крезола в очищенных сточных водах. Вольтамперометрическое определение п-крезола в водных растворах предполагает обработку пробы водорастворимым полимером (полиэтиленгликоль ПЭГ-2000) в присутствии сульфата аммония и последующее вольтамперометрическое детектирование п-крезола в экстракте на стеклоуглеродном электроде в присутствии 2,0-2,5 мас.% гидроксида тетраметиламмония в изопропиловом спирте в соотношении 1:20 к анализируемой органической фазе ( для повышения растворимости тетраметиламмония в органической фазе). Достигается повышение селективности и чувствительности анализа. 2 табл.

Изобретение относится к аналитической химии органических соединений и может быть использовано при аналитическом контроле природных и очищенных вод, содержащих фенолы.

Аналогом может служить способ вольтамперометрического определения алкилзамещенных фенолов на аноде (Майрановский С.Г., Страдынь Я.П., Безуглый В.Д. Полярография в органической химии. Л.: Химия, 1975. -352 с.). Определение алкилзамещенных фенолов осуществляется в водной среде в присутствии серной кислоты, предел обнаружения 10 мг/дм3.

В качестве прототипа выбран способ вольтамперометрического определения п-крезола в среде ацетонитрила (Манн Ч., Варнес К. Электрохимические реакции в неводных средах. М.: Химия, 1974. - с 236). В среде ацетонитрила возможно суммарное определение фенолов, предел обнаружения 10 мг/дм3.

Задачей изобретения является снижение пределов обнаружения, улучшение условий труда путем исключения токсичного неводного растворителя, определение п-крезола в присутствии фенола, о- и м-крезолов.

Поставленная задача достигается тем, что способ вольтамперометрического определения п-крезола в водных растворах включающий детектирование на индикаторном электроде, перед детектированием пробу обрабатывают при pH 2-3 водорастворимым полимером (ПЭГ-2000), взятом в количестве 0,5-2,5 мас.% по отношению к пробе в присутствии 35,0 - 43,0 мас.% высаливателя сульфата аммония с последующим отделением органической фазы и добавлением к ней 2,0 - 2,5 мас.% раствора гидроксида тетраметиламмония в изопропиловом спирте.

Предлагаемый способ вольтамперометрического определения п-крезола позволяет проводить определение в присутствии фенола, о- и м-крезолов, концентрирование ПЭГ-2000 в 50 раз снижает пределы обнаружения п-крезола по сравнению с прототипом.

Примеры осуществления способа Пример 1. К 500 см3 анализируемой пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 43,0 мас.% сульфата аммония и 2,5 мас. % ПЭГ-2000, встряхивали на вибросмесителе в течение 15 мин. После расслаивания системы на две жидкие фазы (20 мин) верхнюю фазу отделяли, добавляли 2,0 - 2,5 мас. % гидроксида тетраметиламмония в изопропиловом спирте, помещали в трехэлектродную электрохимическую ячейку и регистрировали анодную вольтамперометрическую кривую окисления п-крезола в полярографе LP-7. В качестве индикаторного электрода применяли микродисковый стеклоуглеродный электрод, электрод сравнения - хлоридсеребряный электрод, вспомогательный электрод - стеклоуглеродная ячейка. График зависимости предельного диффузионного тока от налагаемого потенциала линеен в интервале концентраций п-крезола 5,0-0,01 мг/дм3.

Концентрация п-крезола в анализируемом водном растворе (Cв, мг/см3) рассчитывали по уравнению Cв=(C100)/(KR), где C - концентрация п-крезола в экстракте (находили по вольтамперометрической кривой методом добавок), мг/см3; К - коэффициент концентрирования; R - степень извлечения п-крезола ПЭГ-2000 в присутствии сульфата аммония, равная 99,5% при К=10, Результаты определения п-крезола в присутствии фенола, о-, м-крезолов приведены в табл. 1.

Пример 2. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 42,0 мас.% сульфата аммония. Далее анализ осуществляли аналогично примеру 1.

Пример 3. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 41,0 мас.% сульфата аммония. Далее анализ осуществляли аналогично примеру 1.

Пример 4. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 40,0 мас.% сульфата аммония. Далее анализ осуществляли аналогично примеру 1.

Пример 5. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 39,0 мас.% сульфата аммония. Далее анализ осуществляли аналогично примеру 1.

Пример 6. К 500 см3 анализируемой водной пробы, содержащей фенол, о- м- и п-крезолы, подкисленной до pH 2-3, добавили 38,0 мас.% сульфата аммония. Далее анализ осуществляли аналогично примеру 1.

Пример 7. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 37,0 мас.% сульфата аммония. Далее анализ осуществляли аналогично примеру 1.

Пример 8. К 500 см3 анализируемой водной пробы, содержащей фенол, о- м- и п-крезолы, подкисленной до pH 2-3, добавили 36,0 мас.% сульфата аммония. Далее анализ осуществляли аналогично примеру 1.

Пример 9. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 35,0 мас.% сульфата аммония. Далее анализ осуществляли аналогично примеру 1.

Пример 10. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 34,0 мас.% сульфата аммония. Объем выделевшейся фазы ПЭГ-2000 недостаточен для вольтамперометрического определения. Способ неосуществим.

Пример 11. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 44,0 мас.% сульфата аммония. Анализ невозможен вследствие появления твердой фазы.

Пример 12. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м и п-крезолы, подкисленной до pH 2-3, добавили 43,0 мас.% сульфата аммония и 0,5 мас.% ПЭГ-2000. Далее анализ осуществляли аналогично примеру 1.

Пример 13. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 43,0 мас.% сульфата аммония и 0,4 мас.% ПЭГ-2000. Далее анализ осуществляли аналогично примеру 1.

Пример 14. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 43,0 мас.% сульфата аммония и 1,0 мас.% ПЭГ-2000. Далее анализ осуществляли аналогично примеру 1.

Пример 15. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 43,0 мас.% сульфата аммония и 2,0 мас.% ПЭГ-2000. Далее анализ осуществляли аналогично примеру 1.

Пример 16. К 500 см3 анализируемой водной пробы, содержащей фенол, о-, м- и п-крезолы, подкисленной до pH 2-3, добавили 43,0 мас.% сульфата аммония и 3,5 мас.% ПЭГ-2000. Анализ неосуществим вследствие недостаточной кратности концентрирования.

Сравнительная характеристика предлагаемого способа и прототипа приведена в табл. 2. Предлагаемый способ позволяет селективно определять п-крезол в присутствии фенола, о- и м-крезолов. Снижается предел обнаружения по сравнению с прототипом и улучшаются условия труда (применение менее токсичного растворителя).

Формула изобретения

Способ вольтамперометрического определения п-крезола в водных растворах, включающий детектирование на индикаторном электроде, отличающийся тем, что перед детектированием пробу обрабатывают при pH 2-3 водорастворимым полимером (ПЭГ-2000), взятым в количестве 0,5 - 2,5 мас.% по отношению к пробе в присутствии 35,0 - 43,0 мас.% высаливателя - сульфата аммония с последующим отделением органической фазы и добавлением к ней 2,0 - 2,5 мас.% гидроксида тетраметиламмония в изопропиловом спирте.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к аналитической химии, в частности к вольтамперометрическим способам определения в водных растворах

Изобретение относится к способу и устройству для определения концентрации органических веществ в растворах

Изобретение относится к области аналитической химии, в частности к вольтамперметрическому способу определения химико-терапевтического средства, применяемого при онкологических заболеваниях - 5-фторурацила

Изобретение относится к области аналитической химии, а именно к способу инверсионно-вольт-амперометрического определения разновалентных форм мышьяка в водных растворах, основанному на электронакоплении As (III) на стационарном ртутном электроде в присутствии ионов Cu2+ и последующей регистрации кривой катодного восстановления сконцентрированного арсенида меди, включающему определение содержания As (III) на фоне 0,6 M HCl + 0,04 M N2H4 2HCl + 50 мг/л Cu2+ по высоте инверсионного катодного пика при потенциале (-0,72)В, химическое восстановление As(V) до As (III), измерение общего содержания водорастворимого мышьяка и определение содержания As(V) по разности концентраций общего и трехвалентного мышьяка, при этом в раствор, проанализированный на содержание As (III), дополнительно вводят HCl, KI и Cu2+, химическое восстановление As(V) до As (III) осуществляют в фоновом электролите состава 5,5M HCl + 0,1M KI + 0,02M N2H4 2HCl + 100 мг/л Cu2+, электронакопление мышьяка производят при потенциале (-0,55 0,01)В, катодную вольт-амперную кривую регистрируют в диапазоне напряжений от (-0,55) до (-1,0)В, а общее содержание мышьяка в растворе определяют по высоте инверсионного пика при потенциале (-0,76 0,01)В

Изобретение относится к электрохимическому анализу и может быть использовано при создании аппаратно-программного средств для контроля состава и свойств веществ в различных областях науки, техники, промышленности, сельского хозяйства и экологии, а также для электрохимических исследований

Изобретение относится к области аналитической химии, в частности к вольтамперометрическим способам определения в водных растворах

Изобретение относится к области электрохимических измерений, а именно к устройству для электрохимических измерений (варианты)

Изобретение относится к аналитической измерительной технике, а именно к способу вольт-амперометрии, включающему подачу на электрохимическую ячейку поляризующего напряжения и измерение тока через нее, при этом перед каждым моментом измерения подключают в преобразователе тока электрохимической ячейки в напряжение эталонный резистор, на котором производят преобразование тока электрохимической ячейки в напряжение, с максимальным сопротивлением, при котором не происходит перегрузка усилителя преобразователя, а сигнал с выхода преобразователя тока в напряжение подают на вход масштабного преобразователя, коэффициент передачи которого устанавливают обратно пропорциональным сопротивлению подключенного эталонного резистора, а затем измеряют сигнал на выходе масштабного преобразователя

Изобретение относится к медицине и может быть использовано для иммунодиагностики инфекций

Изобретение относится к области прикладной радиохимии, в частности к производству радиофармацевтических препаратов для медицины

Изобретение относится к аналитической химии органических соединений и может быть использовано для извлечения нитрозо-R-соли (1-наятол-2-нитрозо-3,6-дисульфокислоты двунатриевая соль) из водных сред предприятий, производящих и потребляющих синтетические красители

Изобретение относится к области химической технологии и может быть использовано в процессах жидкостной экстракции, в частности, в нефтепереработке (например на установках селективной очистки масляных фракций различными растворителями), нефтехимии, химической промышленности и других отраслях

Изобретение относится к области получения соединений для топлива ядерных реакторов, в частности к очистке урана от плутония

Изобретение относится к способу выделения энантиомеров из рацемической смеси противоточной экстракцией при помощи по меньшей мере двух жидкостей, имеющих взаимно различную хиральность, причем эти жидкости полностью смешиваются и разделены друг от друга фазой, с которой они не смешиваются

Изобретение относится к области химической технологии и может быть использовано в процессах разделения смесей компонентов жидкостной экстракцией в нефтепереработке, нефтехимии, химической, пищевой промышленности и других отраслях
Изобретение относится к области гидрометаллургии
Наверх