Способ компенсации последовательного активного сопротивления электрохимической ячейки в вольтамперометрии

 

Использование: в аналитической технике для биологии, медицине, металлургии, электронике, экологии, в частности в способе компенсации последовательного активного сопротивления электрохимической ячейки в вольтамперометрии при измерении концентрации ионов и электрохимически активных веществ и примесей в растворах. Сущность изобретения: для увеличения чувствительности и точности вольтамперометрических измерений за счет устранения неконтролируемого фазового сдвига в цепи ячейки (фазочувствительная переменнотоковая вольтамперометрия (ВА)), ускорения перезаряда емкости двойного слоя индикаторного электрода (импульсная ВА), устранения искажения (в постоянно токовой ВА), в способе компенсация ведется посредством введения общей или местной положительной обратной связи (ПОС), глубина которой устанавливается по максимальному отношению величины протекающего через ячейку гармонического тока большей частоты и величины гармонического тока меньшей частоты, вызываемых поданными на электрохимическую ячейку небольшими гармоническими напряжениями. При максимальном значении этого отношения происходит полная компенсация последовательного сопротивления ячейки. 1 з. п. ф-лы, 2 ил.

Изобретение относится к области электрохимической измерительной техники и может быть использовано в вольтамперометрических анализаторах и полярографах, применяемых в биологии и медицине, электронной промышленности, геологии, научных исследованиях, охране окружающей среды и других областях народного хозяйства, в которых необходимо измерить небольшие концентрации ионов в растворах.

Наиболее близким техническим решением, выбранном в качестве прототипа, является способ компенсации последовательного активного сопротивления (R) электрохимической ячейки с применением положительной обратной связи (ПОС). В этом известном решении на электрохимическую ячейку подают поляризующее напряжение и увеличивают его за счет части напряжения пропорционального току через ячейку до тех пор, когда начинается генерация (самовозбуждение) в системе потенциостат-ячейка-преобразователь тока ячейки в напряжение (измерительный усилитель). То есть в этом способе используют местную ПОС, а критерием установки ПОС является самовозбуждение системы.

Недостатком известного способа является невысокая точность компенсации последовательного активного сопротивления электрохимической ячейки, не позволяющая повысить чувствительность и точность измерений в вольтамперометрии из-за реального несовпадения момента возникновения самогенерации и полной компенсации R . Это совпадение может быть удовлетворительным лишь при использовании идеальных усилителей (бесконечная полоса частот и коэффициент передачи, нулевой входной ток и т.п.). Реально при 100% компенсации R еще не наступает самовозбуждение. При появлении самогенерации происходит перекомпенсация R. Кроме того, точность компенсации (и ее стабильность) зависит от установления факта самовозбуждения, то есть амплитуды и частоты генерации, что само собой является нетривиальной задачей. Также необходимо отметить влияние низкой устойчивости известного способа (работа на границе самовозбуждения) на точность и стабильность компенсации.

Сущность заявляемого изобретения заключается в том, что на электрохимическую ячейку кроме поляризующего напряжения подают дополнительно два гармонических напряжения с небольшими амплитудами, при которых практически не проявляется нелинейность ячейки (как правило меньше 10 мВ) и различающимися частотами, измеряют гармонические токи через ячейку на частотах подаваемых гармонических напряжений, определяют отношение величины гармонического тока большей частоты к величине гармонического тока меньшей частоты и устанавливают такую величину ПОС, то есть увеличивают поляризующее напряжение на электрохимической ячейке на часть напряжения, пропорционального току ячейки, при которой это отношение максимально.

Повышение точности достигается тем, что перекомпенсации R не происходит. Стабильность определяется тем, что установленная оптимальная ПОС не приводит к появлению самовозбуждения, кроме того, применение дополнительной коррекции позволяет еще повысить запас устойчивости без снижения точности, как в прототипе.

Покажем, что отношение величины гармонического тока большей частоты к величине гармонического тока меньшей частоты максимально при полной компенсации R. Для этого рассмотрим простейшую схему замещения электрохимической ячейки на фиг. 1. Импеданс ячейки в комплексной форме: где = 2f - круговая частота, f - частота, j - мнимая единица.

Модуль импеданса ячейки может быть записан в форме: Определим отношение модуля проводимости ячейки (обратная величина модулю импеданса) при частоте а (где а - вещественное число больше 1) к модулю проводимости при частоте . Это отношение равно отношению гармонических токов при этих же частотах и одинаковой величине подаваемых на ячейку гармонических напряжений.

Обозначим A = 2C2R2, после преобразования получим это отношение в следующем виде: Исследуем подкоренное выражение на экстремумы в зависимости от величины R, для этого возьмем первую и вторую производные по R. Получим после преобразования первую производную, которую приравниваем к нулю: R2RA(1-a2)(R+R) = 0 Это равенство выполняется при двух значениях R: R1= 0, R2= -R
Вторая производная:
2RA(1-a2)(2R+R)
Подставляем полученные значения R.

При R1 = О вторая производная отрицательна (так как а > 1 I) и при этом значении функция (I) максимальна. При R2 = - R вторая производная положительна и функция (I) минимальна.

То есть только при полной компенсации R отношение величины гармонического тока большей частоты к величине гармонического тока меньшей частоты при подаче на ячейку двух гармонических напряжений максимально и это отношение может быть критерием компенсации R.

Соотношение между величинами подаваемых на ячейку гармонических напряжений может быть различным, важно, чтобы они не различались между собой во много раз, а наиболее оптимально (с точки зрения выраженности максимума отношения токов от величины ПОС) - были одного порядка или равны, причем амплитуда напряжения большей частоты выбирается меньшей. Измеряемыми величинами гармонического тока могут быть размах, амплитуда, действующее, средневыпрямленное значения. Величина подаваемых на ячейку гармонических напряжений не должна быть большой, чтобы нелинейность параметров ячейки не вносила существенных искажений в ток, вызванный этими напряжениями. Частоты подаваемых гармонических напряжений целесообразно выбирать в диапазоне, в котором падение напряжения на R не было значительно меньше, чем на емкости двойного слоя индикаторного электрода и чем больше частоты (и больше различие между ними), тем выраженнее максимум отношения токов при полной компенсации R. Выбирать частоты больше 10 кГц также нецелесообразно, так как начинает сказываться зависимость параметров ячейки от частоты, что может привести к снижению точности компенсации R. Соотношение частот подаваемых гармонических напряжений целесообразно выбирать в диапазоне от 2 до 10. При соотношении частот меньше 2 степень изменения отношения токов от степени компенсации R незначительна, что приводит к снижению точности. При соотношении частот больше 10 параметры ячейки могут сильно отличаться для этих частот, что также может привести к снижению точности компенсации R. Величина подаваемых гармонических напряжений выбирается в диапазоне долей мВ - единиц мВ. При относительно высокой частоте амплитуду можно снижать, чтобы гармонические токи через ячейку не становились очень большими, так как при полной компенсации R гармонический ток через ячейку становится значительным. Например, при емкости двойного слоя индикаторного электрода 1 мкф, частоте 1 кГц, полной компенсации R и величине подаваемого гармонического напряжения 1 мв гармонический ток составляет значительную величину (6 мкА). Поэтому можно подавать 0,1 мВ, тем более, что выделить гармоническое напряжение на фоне остальных сигналов не представляет труда узким полосовым фильтром. А это допустимо в предложенном способе, так как для выяснения максимума отношения гармонических токов не важна их фаза или ее стабильность.

Предложенный способ может быть использован в полярографах и вольтамперометрических анализаторах для повышения чувствительности и точности измерений методами переменнотоковой фазочувствительной, импульсной и постояннотоковой вольтамперометрии.

Пример осуществления способа.

На фиг. 2 представлена схема реализации предложенного способа, представляющего собой постояннотоковый полярограф для измерений в высоких средах, в которых нескомпенсированное последовательное сопротивление резко снижает чувствительность и точность измерений. Работает схема следующим образом. При включении питания полярограф устанавливается в исходное состояние - реверсивный двоичный 12 разрядный счетчик СЧ и счетный триггер ТГ устанавливаются в исходное нулевое состояние (цепи сброса на схеме не показаны). На электрохимическую ячейку ЭХЯ от источника поляризующего напряжения ИПН и двух генераторов синусоидального напряжения ГСН1 и ГСН2 через сумматор на операционном усилителе А1 подается постоянное напряжение и два переменных напряжения размахом 5 мВ частотой 500 Гц (ГСН1) и 200 Гц (ГСН2). Ток ЭХЯ преобразуется в напряжение на усилителе А2 с резистором в отрицательной обратной связи. С выхода А2 напряжение поступает на регистратор Р, осуществляющий регистрацию величины постоянного тока ЭХЯ, перемножитель аналого-цифровой ПАЦ и два полосовых фильтра ПФ1 на 500 Гц и ПФ2 на 200 Гц. ПФ1 и ПФ2 выделяют гармонические составляющие тока ЭХЯ и определяют их средневыпрямленные значения, которые поступают на делитель Д, осуществляющий деление сигнала с ПФ1 на сигнал с ПФ2 и определяющий отношение гармонических токов через ячейку. Результат деления поступает на устройство выборки и хранения УВХ и вычитающее устройство ВУ, на второй вход которого поступает сигнал с УВХ. Сигнал с ВУ подается на формирователь импульса ФИ, который каждый раз вырабатывает короткий импульс при переходе напряжения на выходе ВУ через нуль. Этот импульс с ФИ поступает на счетный вход ТР, который перебрасывается в противоположное состояние и управляет направлением счета в счетчике (0-прямой, 1-обратный счет). Двоичный код с СЧ поступает на 12 разрядный ПАЦ, на выходе которого напряжение пропорционально величине двоичного кода и напряжению с А2. С выхода ПАЦ через резистор на инвертирующий вход А1 замыкается общая ПОС. Управление СЧ и УВХ осуществляет тактовый генератор ТГ, вырабатывающий короткие импульсы, причем в начале происходит изменение двоичного кода в СЧ на единицу, а затем включение УВХ на режим выборки, так как сигнал на УВХ с ТГ поступает через интегрирующую цепочку.

После включения питания по импульсу с ТГ начинает счет СЧ в прямом направлении, так как на выходе ТР - нуль. Часть напряжения с выхода А2 поступает через ПАЦ и А1 на ЭХЯ и увеличивает напряжение на ней (ПОС приводит как бы к включению последовательного отрицательного сопротивления). Отношение гармонических токов увеличивается и увеличивается сигнал с Д, так как на УВХ был нуль, а на выходе ВУ также положительное напряжение. При следующем импульсе с ТГ происходит то же самое, так как ПОС увеличивается, а предыдущее значение с Д меньше последующего и поэтому на выходе ВУ неизменное напряжение. После достижения полной компенсации R следующий импульс с ТГ приводит к уменьшению отношения гармонических токов и сигнал на выходе Д меньше чем на УВХ. Вследствие этого напряжение на выходе ВУ становится отрицательным и по его перепаду через ФИ ТР устанавливается в единичное состояние. По импульсу с ТГ происходит уменьшение двоичного кода в СЧ на единицу, вследствие этого глубина ПОС уменьшается, а напряжение на выходе Д стремится к максимальному значению. Таким образом происходит слежение за максимальным отношением гармонических токов через ячейку, при котором наступает полная компенсация R, наличие которого вносит существенные искажения при вольтамперометрических измерениях в высокоомных средах.

Предложенный способ позволяет значительно повысить точность и стабильность компенсации последовательного активного сопротивления электрохимической ячейки, в том числе и ту часть активного сопротивления, которая вносится электрической схемой. Применение предложенного способа позволяет повысить чувствительность и точность измерений в вольтамперометрии.


Формула изобретения

1. Способ компенсации последовательного активного сопротивления электрохимической ячейки в вольтамперометрии, заключающийся в том, что поляризующее напряжение на электромеханической ячейке увеличивают за счет части напряжения, пропорционального току через нее, отличающийся тем, что на электрохимическую ячейку подают дополнительно два гармонических напряжения с небольшими амплитудами и различными частотами, измеряют гармонические токи через ячейку на этих частотах, определяют отношение величины гармонического тока большей частоты к величине гармонического тока меньшей частоты и увеличивают поляризующее напряжение на электрохимической ячейке на такую часть напряжения, пропорционального току через нее, при которой это отношение величин гармонических токов максимально.

2. Способ по п. 1, отличающийся тем, что амплитуды двух дополнительно подаваемых на ячейку гармонических напряжений устанавливают от 0,1 до 10 мВ, а соотношение частот этих напряжений от 2 до 10 раз.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области аналитической химии, а именно к способу инверсионно-вольт-амперометрического определения разновалентных форм мышьяка в водных растворах, основанному на электронакоплении As (III) на стационарном ртутном электроде в присутствии ионов Cu2+ и последующей регистрации кривой катодного восстановления сконцентрированного арсенида меди, включающему определение содержания As (III) на фоне 0,6 M HCl + 0,04 M N2H4 2HCl + 50 мг/л Cu2+ по высоте инверсионного катодного пика при потенциале (-0,72)В, химическое восстановление As(V) до As (III), измерение общего содержания водорастворимого мышьяка и определение содержания As(V) по разности концентраций общего и трехвалентного мышьяка, при этом в раствор, проанализированный на содержание As (III), дополнительно вводят HCl, KI и Cu2+, химическое восстановление As(V) до As (III) осуществляют в фоновом электролите состава 5,5M HCl + 0,1M KI + 0,02M N2H4 2HCl + 100 мг/л Cu2+, электронакопление мышьяка производят при потенциале (-0,55 0,01)В, катодную вольт-амперную кривую регистрируют в диапазоне напряжений от (-0,55) до (-1,0)В, а общее содержание мышьяка в растворе определяют по высоте инверсионного пика при потенциале (-0,76 0,01)В

Изобретение относится к электрохимическому анализу и может быть использовано при создании аппаратно-программного средств для контроля состава и свойств веществ в различных областях науки, техники, промышленности, сельского хозяйства и экологии, а также для электрохимических исследований

Изобретение относится к области аналитической химии, в частности к вольтамперометрическим способам определения в водных растворах

Изобретение относится к области электрохимических измерений, а именно к устройству для электрохимических измерений (варианты)

Изобретение относится к аналитической измерительной технике, а именно к способу вольт-амперометрии, включающему подачу на электрохимическую ячейку поляризующего напряжения и измерение тока через нее, при этом перед каждым моментом измерения подключают в преобразователе тока электрохимической ячейки в напряжение эталонный резистор, на котором производят преобразование тока электрохимической ячейки в напряжение, с максимальным сопротивлением, при котором не происходит перегрузка усилителя преобразователя, а сигнал с выхода преобразователя тока в напряжение подают на вход масштабного преобразователя, коэффициент передачи которого устанавливают обратно пропорциональным сопротивлению подключенного эталонного резистора, а затем измеряют сигнал на выходе масштабного преобразователя

Изобретение относится к медицине и может быть использовано для иммунодиагностики инфекций

Изобретение относится к физико-химическим методам анализа водных растворов, а именно, к устройству для электрохимического определения органических примесей в воде путем реализации заданной временной диаграммы потенциалов, содержащему электрохимическую ячейку с тремя электродами, из которых платиновый рабочий электрод подсоединен к инвертируемому входу токового усилителя, выход которого соединен с измерительно-информационной системой, управляемой программно-задающим устройством, сравнительный электрод подсоединен к входу согласующего усилителя, вспомогательный электрод подсоединен к выходу регулирующего усилителя, инвертированный вход которого через параллельные масштабные резисторы подключен к выходу согласующего усилителя и программно-задающему устройству, при этом к выходу токового усилителя подключена система автоматической подстройки нулевого уровня потенциалов временной диаграммы, состоящая из последовательно соединенных двухполупериодного выпрямителя, преобразователя напряжение-частота, управляемых от программно-задающего устройства реверсивного двоичного счетчика и двоичного регистра, цифроаналогового преобразователя, первого сумматора напряжений с выходом через первый масштабный резистор на инвертируемый вход регулирующего усилителя и резистора, задающего на первом сумматоре напряжений область смещения нулевого уровня потенциалов временной диаграммы, к инвертированному входу регулирующего усилителя через второй масштабный резистор подключен управляемый от программно-задающего устройства второй сумматор напряжения, выполняющий роль электронного компенсатора смещения нулевого уровня временной диаграммы потенциалов, к выходу токового усилителя подсоединен коммутирующий элемент для подключения информационных сигналов к цифровой индикации измерительно-информационной системы

Изобретение относится к аналитической химии, в частности к инверсионному вольтамперометрическому способу определения хлориндия фталоцианина, проявляющего заметную фотоэлектрохимическую активность

Изобретение относится к аналитической химии органических соединений, а именно к способу определения гидрохинона и гваякола или пирокатехина и гваякола в водных растворах вольтамперометрическим методом, при этом пробу предварительно обрабатывают диоксаном в присутствии сульфата аммония и определение проводят в выделившейся органической фазе на стеклоуглеродном электроде при pH 2-3

Изобретение относится к области аналитической химии, а именно к микропроцессорному вольтамперометрическому анализатору тяжелых металлов ABC-1, содержащему трехэлектродную электрохимическую ячейку, включающую рабочий электрод, вспомогательный электрод и электрод сравнения, и блок управления вращением рабочего электрода, при этом трехэлектродная электрохимическая ячейка и блок управления вращением рабочего электрода выполнены в виде единого блока электрохимического датчика, анализатор снабжен потенциостатом, аналоговым сумматором, цифроаналоговым преобразователем линейно меняющегося напряжения, цифроаналоговым преобразователем переменного напряжения, устройством разрыва входной цепи, входным усилителем-преобразователем, устройством выбора режима развертки, схемой выборки/хранения, аналого-цифровым преобразователем и микропроцессорным блоком, включающим модуль управления входными устройствами, модуль синхронного детектора, модуль цифрового фильтра, модуль буфера накопления, модуль алфавитно-цифрового дисплея, модуль обслуживания алфавитно-цифрового дисплея, модуль индикации, модуль связи с внешними устройствами, состоящий из модуля порта последовательной передачи данных и модуля порта параллельной передачи данных, и блок постоянной памяти, содержащий задающий генератор линейно меняющегося напряжения, задающий генератор переменного напряжения, модуль редактирования параметров развертки, программный таймер, модуль выбора режима работы и модуль цифровой обработки, один из входов которого соединен с соответствующим выходом модуля выбора режима работы, второй вход модуля цифровой обработки соединен с выходом модуля буфера накопления, один из входов которого соединен с выходом модуля цифрового фильтра, второй вход модуля буфера накопления подключен к одному из выходов аналого-цифрового преобразователя, другой выход которого через модуль синхронного детектора соединен с одним из входов модуля цифрового фильтра, другой вход которого подключен к одному из выходов модуля выбора режима работы, второй вход модуля синхронного детектора соединен со вторым выходом модуля выбора режима работы, третий выход которого через программный таймер соединен с соответствующими входами задающего генератора линейно меняющегося напряжения и задающего генератора переменного напряжения, вторые входы которых подключены к соответствующим выходам модуля редактирования параметров развертки, вход которого объединен с входом модуля выбора режима работы, и подключены к выходу модуля обслуживания алфавитно-цифрового дисплея, четвертый выход модуля выбора режима работы соединен с одним из входов модуля индикации, другой вход которого подключен к третьему выходу программного таймера, четвертый выход которого соединен со входом модуля управления входными устройствами, а пятый выход программного таймера подключен к третьему входу модуля синхронного детектора, один из выходов модуля цифровой обработки соединен с модулем алфавитно-цифрового дисплея, второй и третий выходы модуля цифровой обработки подключены соответственно к модулю порта последовательной передачи данных и к модулю порта параллельной передачи данных, выход модуля управления входными устройствами соединен одновременно с соответствующими входами последовательно соединенных аналого-цифрового преобразователя, схемы выборки/хранения, устройства выбора режима развертки, входного усилителя-преобразователя и устройства разрыва входной цепи, выход модуля управления входными устройствами соединен также с одним из входов блока управления вращением рабочего электрода, соединенного одновременно с соответствующим входом устройства разрыва входной цепи и с рабочим электродом, вспомогательный электрод и электрод сравнения подключены к соответствующим выходам потенцистата, включенного последовательно с аналоговым сумматором, первый и второй входы которого соединены соответственно с выходами цифроаналогового преобразователя линейно меняющегося напряжения и цифроаналогового преобразователя переменного напряжения, первые входы цифроаналогового преобразователя линейно меняющегося напряжения и цифроаналогового преобразователя переменного напряжения объединены и подключены к выходу задающего генератора линейно меняющегося напряжения, а вторые их объединенные входы подключены к входу задающего генератора переменного напряжения

Изобретение относится к области аналитической химии, в частности к вольтамперметрическому способу определения химико-терапевтического средства, применяемого при онкологических заболеваниях - 5-фторурацила

Изобретение относится к способу и устройству для определения концентрации органических веществ в растворах

Изобретение относится к аналитической химии, в частности к вольтамперометрическим способам определения в водных растворах

Изобретение относится к области электрохимических методов анализа, в частности для определения тяжелых металлов с использованием модифицированного электрода
Изобретение относится к области аналитической химии, в частности к инверсионно-вольтамперометрическому способу определения лекарственного препарата кардила

Изобретение относится к устройствам для электрохимических, в том числе для коррозионных измерений, и может быть использовано в нефтегазовой, химической, металлургической и других отраслях промышленности
Изобретение относится к области аналитической химии, в частности к инверсионно-вольтамперометрическому способу определения лекарственного препарата, дигоксина в сыворотке крови

Изобретение относится к аппаратуре для электрохимического анализа и может быть использовано в качестве датчика в составе полярографической аппаратуры
Наверх