Агломераты металлического кобальта, способ их получения и их применение

 

Описывается агломерат металлического кобальта, состоящий из первичных частиц, имеющих форму ореха арахиса и средний диаметр 0,1 - 0,7 мкм, и имеющий вторичную агломерированную структуру. Его получают за счет того, что осуществляют непрерывное взаимодействие соли кобальта общей формулы CoX2, где Х означает Сl-, NO3- и/или 1/2 SO42-, с водным раствором или суспензией карбоната и/или бикарбоната щелочного металла и/или аммония при температуре от 40 до 100°С, предпочтительно от 60 до 90°С, с образованием основного карбоната кобальта, который выделяют и промывают для отделения нейтральных солей, затем обрабатывают водным раствором щелочи и/или гидроксида аммония, окисляют окислителем до образования гетерогенита трехвалентного кобальта, который восстанавливают до агломерата металлического кобальта, предусмотрен агломерат металлического кобальта, обеспечивающий безупречное качество получаемых с его помощью изделий. 2 с. и 5 з.п. ф-лы, 3 табл., 3 ил.

Изобретение относится к технологии порошковых металлов, в частности к агломерату металлического кобальта, и способу его получения.

Известен агломерат металлического кобальта, получаемый путем смешивания порошков, полученных распылением и имеющих размеры 5-150 мкм, и порошков, образующихся путем восстановления водородом, размеры которых составляют 0,9-1,7 мкм. Получаемый таким образом агломерат металлического кобальта состоит из первичных (исходных) частиц порошка кобальта (см. заявку ФРГ N 4 343 594 C1, кл. В 22 F 1/00, 02.02.1995).

Кроме того, известен способ получения агломерата металлического кобальта, согласно которому из соли кобальта общей формулы CoX2, где X означает Cl-, NO3- и/или 1/2 SO42-, получают гидроксид кобальта, затем оксид кобальта и в конечном счете путем его восстановления агломерат металлического кобальта (см. статью "Preparation and Characterization of fine Cobalt metal and Oxide Powders", PMAI News Letter, том 4, N 4, сентябрь 1979, стр. 17-21).

Недостаток известного агломерата металлического кобальта и получаемого известным способом агломерата металлического кобальта заключается в том, что они сорбируют кислород и влагу воздуха, что часто приводит к ухудшению текучести при их использовании в качестве связующего при производстве твердосплавного и режущего инструмента на основе различных твердых веществ, например карбида вольфрама, алмаза, карбида кремния и кубического натрида бора, которое сказывается на качестве инструмента.

Задачей изобретения является разработка агломерата металлического кобальта, обеспечивающего безупречное качество получаемых с его помощью изделий.

Поставленная задача решается предлагаемым агломератом металлического кобальта, состоящим из первичных частиц и имеющим вторичную агломерированную структуру, за счет того, что первичные частицы имеют форму ореха арахиса и их средний размер составляет от 0,1-0,7 мкм.

Вторичная агломерированная структура предлагаемого агломерата предпочтительно представлена сферами со средними диаметрами от 3 до 50 мкм, в частности от 5 до 20 мкм.

Предлагаемый агломерат имеет предпочтительную удельную поверхность в диапазоне от 2 до 6 м2/г (определенную промышленным стандартом Германии ДИН 66131).

Поставленная задача также решается предлагаемым способом получения агломерата металлического кобальта, включающим взаимодействие соли кобальта общей формулы CoX2, где X означает Cl-, NO3- и/или 1/2 SO42-, с реагентом и восстановление до агломератов металлического кобальта, за счет того, что осуществляют непрерывное взаимодействие указанной соли кобальта с водным раствором или суспензией карбоната и/или бикарбоната щелочного металла и/или аммония при температуре от 40 до 100oC, предпочтительно от 60 до 90oC, с образованием основного карбоната кобальта, который выделяют и промывают для отделения нейтральных солей, затем обрабатывают водным раствором щелочи и/или гидроксида аммония, окисляют окислителем до образования гетерогенита трехвалентного кобальта, который восстанавливают до агломерата металлического кобальта.

Предпочтительная средняя длина первичных частиц нерегулярной продолговатой формы составляет от 0,5 до 1 мкм, а их диаметр в общем случае не превышает 0,5 мкм.

Фиг. 3 демонстрирует полученные на растровом электронном микроскопе снимки соответствующих изобретению агломератов металлического кобальта, полученных по примеру 3, при кратности увеличения, равной 5000 и 15000.

Указанная характеристика по удельной поверхности и небольшие размеры первичных частиц обеспечивают хорошую спекаемость соответствующих изобретению агломератов металлического кобальта, из которых при спекании можно получить изделия с плотностями около 8,5 г/см3 уже при температурах около 700oC.

Фиг. 2 и таблица 2 показывают зависимость плотности изделий от температуры спекания, образующихся при спекании соответствующего изобретению агломерата порошка металлического кобальта по примеру 3, в сравнении с изделиями, которые получены спеканием из известных порошков металлического кобальта.

Уже при температуре всего лишь 620oC удается при горячем прессовании получать сегменты, твердость которых доходит до 110 единиц по Рокуэллу (HRВ). Эти значения твердости относятся к наивысшим из достигнутых до настоящего времени. В случае изделий из соответствующих уровню техники порошков металлического кобальта для достижения значений твердости 110 HRВ требуются температуры около 780oC. Фиг. 1 и таблица 1 показывают зависимость твердости изделий от температуры спекания, образующихся при спекании соответствующего изобретению агломерата порошка металлического кобальта по примеру 3, в сравнении с образцами, полученными спеканием известных порошков металлического кобальта. Эти данные ясно показывают, что на основе соответствующего изобретению агломерата порошка металлического кобальта высокие значения твердости достигаются уже при температуре 620oC, которые к тому же остаются постоянными во всем температурном интервале до 900oC. Это дает производителям режущего и бурильного инструмента на основе твердых материалов, полученных в результате спекания связующих, больший простор в ходе их производства. Они могут не опасаться изменения качества в результате изменения твердости кобальтового связующего.

Предлагаемый способ проводят следующим образом.

На первой стадии предпочтительно в непрерывно действующем проточном реакторе с эффективной мешалкой проводят взаимодействие раствора соли двухвалентного кобальта общей формулы CoX2, где X означает Cl-, NO3- и/или 1/2 SO42-, с водными растворами или с суспензиями карбонатов и/или бикарбонатов щелочных металлов и/или аммония. Температурный интервал, в котором протекает это взаимодействие, лежит предпочтительно в пределах от 60 до 90oC. При этом, в отличие от используемых обычно способов осаждения, образуется не кристаллический карбонат кобальта с кристаллами в виде палочек, а сферический основный карбонат кобальта. Его отфильтровывают и отмывают от нейтральных солей. Полученный таким образом основный карбонат кобальта на следующей стадии переводят в сферический гидроксид двухвалентного кобальта добавлением щелочей с сохранением вторичной морфологии и затем окисляют подходящим окислителем до оксидогидроксида трехвалентного кобальта, CoO(OH), или гетерогенита. В качестве окислителей могут использоваться гипохлориты, пероксодисульфаты, пероксиды и подобные им вещества, предпочтительно пероксид водорода. Неожиданно оказалось, что окисление гидроксида двухвалентного кобальта в гетерогенит сопровождается уменьшением размеров первичных частиц с полным сохранением их вторичной морфологии. Тонкая структура первичных частиц с размером от 0,3 до 1,0 мкм сохраняется при последующем восстановлении гетерогенита до металлического кобальта в широком интервале температур от 300 до 800oC. При этом предпочтение следует отдать газообразным восстановителям, таким как водород, метан, закись азота или монооксид углерода при температуре в печи от 350 до 650oC.

В отличие от известных порошков кобальта соответствующие изобретению агломераты металлического кобальта из-за их сферической вторичной структуры показывают очень хорошую текучесть.

Благодаря приведенным здесь свойствам соответствующие изобретению порошки металлического кобальта особенно хорошо подходят в качестве связующих для производства твердосплавного и/или алмазного инструмента. Следует отметить, что соответствующие изобретению агломераты металлического кобальта могут с этой целью применяться как в качестве единственного связующего, так и в комбинации с другими используемыми для этого металлами.

Благодаря хорошей текучести и тонкой первичной структуре соответствующие изобретению агломераты порошков металлического кобальта могут быть с успехом использованы для введения в состав содержащих гидроксид никеля электродных масс для положительного полюса перезаряжаемых батарей, основанных на никель-кадмиевых или никель-металлгидридных технологиях.

В так называемых циклах формирования металлический кобальт в соответствии с его потенциалом окисляется в двухвалентный кобальт, который образует в щелочных электролитах, представляющих собой 30%-ный раствор гидроксида калия, растворимые кобальтаты двухвалентного кобальта и в результате этого равномерно распределяется по электродной массе. При последующей зарядке он в конце концов осаждается на частицах гидроксида никеля в виде проводящего электрический ток слоя из CoO(OH) и обеспечивает таким образом желательное высокое использование массы гидроксида никеля в аккумуляторе. Описанное здесь анодное растворение порошка металлического кобальта протекает, естественно, тем скорее и эффективнее, чем тоньше первичная структура и, соответственно, чем более развита поверхность металлического порошка.

Изобретение иллюстрируется примерами.

Пример 1 В проточный реактор с мешалкой загружают 20 л воды, нагревают ее до 80oC и при интенсивном перемешивании непрерывно подают в него дозирующими насосами со скоростью 5 л в час 1,7 молярный раствор хлорида двухвалентного кобальта и со скоростью 19 л в час 0,9 молярный раствор бикарбоната натрия. После выхода реактора на стационарный режим из переливного штуцера реактора отбирают образующийся продукт, отфильтровывают его и отмывают водой от нейтральных солей. Продукт сушат при температуре 80oC до постоянного веса.

В полученном таким образом карбонате кобальта по данным химического анализа содержится 54,3% кобальта и 32,3% карбонатной составляющей.

Пример 2 В 2 л воды суспендируют 500 г полученного по примеру 1 основного карбоната кобальта. К полученной суспензии при интенсивном перемешивании добавляют раствор 200 г гидроксида натрия в 1,5 л воды, затем нагревают до 60oC и перемешивают в течение 1 часа. Продукт отфильтровывают и промывают 3 л горячей воды. Еще влажный осадок на фильтре снова суспендируют в 2 л воды и окисляют, добавляя в течение 1,5 часа 700 мл 30%-ного пероксида водорода при температуре 45o. После окончания прибавления еще 0,5 часа продолжают перемешивание, затем фильтруют, промывают 2 л горячей воды и сушат при температуре 80oC до постоянного веса. Получают 420 г сферического агломерированного гетерогенита со средним диаметром (D50) агломератов 10,5 мкм. По данным анализа содержание кобальта в продукте 63,9%.

Пример 3 В лодочку из кварца отвешивают 200 г полученного по примеру 2 гетерогенита и восстанавливают его в потоке водорода в течение 3 часов при температуре 450oC. Получают 131 г порошка металлического кобальта в виде сферических агломератов. На фиг. 3 показаны снимки, полученные на растровом электронном микроскопе с кратностью увеличения в 5000 и 15000 раз. Средний диаметр порошка металлического кобальта (D50) 10,5 мкм, показатель, определенный по методу Фишера, составляет 0,62 мкм.

Пример 4 Опыт по спеканию Полученные по примеру 3 агломераты металлического кобальта подвергаются термическому прессованию в приведенных ниже условиях: Используемая аппаратура: DSP 25-ATV (производства др. Фритч ГМБХ) Нагревание до конечной температуры: 3 минуты Время выдержки: 3 минуты Конечное давление: 350 H/мм2
Конечная температура: см. таблицу 1 и таблицу 2
Размер образцов: 40 х 4 х 10 мм.

Таблица 1 и фиг. 1 показывают зависимость твердости от температуры спекания для образцов, образующихся из агломерата порошка металлического кобальта, приготовленного соответствующим изобретению способом по примеру 3, в сравнении с образцами, полученными спеканием из известных порошков металлического кобальта. Представленные данные ясно показывают, что использование для спекания соответствующих изобретению порошков металлического кобальта позволяет достигать высоких значений твердости уже при температуре 620oC и к тому же эти значения твердости остаются постоянными во всем температурном интервале до 980oC.

Таблица 2 и фиг. 2 показывают зависимость плотности изделий от температуры для полученных спеканием, образующихся из агломерата порошка металлического кобальта, приготовленного соответствующим изобретению способом по примеру 3, в сравнении с образцами, полученными спеканием из известных порошков металлического кобальта.

В таблице 3 показано сравнение размеров частиц, определенных по методу Фишера и определенных по методу Брюнауэра-Эммета-Теллера удельных поверхностей (определение по одной точке на кривой низкотемпературной адсорбции азота по DIN 66131, БЭТ-поверхности) агломератов порошков кобальта, полученных по примеру 3, и известных порошков кобальта.


Формула изобретения

1. Агломерат металлического кобальта, состоящий из первичных частиц и имеющий вторичную агломерированную структуру, отличающийся тем, что первичные частицы имеют форму ореха арахиса и их средний размер составляет от 0,1 до 0,7 мкм.

2. Агломерат по п.1, отличающийся тем, что его вторичная агломерированная структура представлена сферами со средними диаметрами от 3 до 50 мкм.

3. Агломерат по п.2, отличающийся тем, что его вторичная агломерированная структура представлена сферами со средними диаметрами от 5 до 20 мкм.

4. Агломерат по любому из пп.1 - 3, отличающийся тем, что он имеет удельную поверхность в диапазоне от 2 до 6 м2/г.

5. Способ получения агломерата металлического кобальта, включающий взаимодействие соли кобальта общей формулы CoX2, где X означает Cl-, NO3- и/или 1/2 SO42-, с реагентом и восстановление до агломератов металлического кобальта, отличающийся тем, что осуществляют непрерывное взаимодействие указанной соли кобальта с водным раствором или суспензией карбоната, и/или бикарбоната щелочного металла, и/или аммония при температуре от 40 до 100oC, предпочтительно от 60 до 90oC, с образованием основного карбоната кобальта, который выделяют и промывают для отделения нейтральных солей, затем обрабатывают водным раствором щелочи и/или гидроксида аммония, окисляют окислителем до образования гетерогенита трехвалентного кобальта, который восстанавливают до агломерата металлического кобальта.

6. Способ по п.5, отличающийся тем, что в качестве окислителя предпочтительно используют пероксид водорода.

7. Способ по п.5, отличающийся тем, что восстановление осуществляют с применением газообразного восстановителя при температуре от 300 до 800oC, предпочтительно от 350 до 650oC.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к технологии порошковых металлов, в частности к агломерату металлического кобальта и способу его получения

Изобретение относится к области получения цветных металлов из вторичного сырья металлургическим способом, в частности из отработанных вторичных химических источников тока, содержащих никель
Изобретение относится к металлургии, в частности к способу переработки вторичных материалов, содержащих никель, кобальт, железо, хром, вольфрам, молибден, тантал, ниобий и другие металлы

Изобретение относится к области металлургии цветных металлов, в частности кобальта

Изобретение относится к области цветной металлургии, в частности к производству никелевых сплавов

Изобретение относится к гидрометаллургии цветных металлов и процессам получения солей кобальта и может быть использовано для экстракционной переработки различных кобальтсодержащих продуктов
Изобретение относится к области металлургии, в частности к способам переработки вторичных материалов, содержащих никель, кобальт, железо, хром, вольфрам, молибден, тантал, ниобий и др

Изобретение относится к цветной металлургии, в частности к переработке промежуточных продуктов технологии, и может быть использовано применительно к металлизированным материалам, образующимся в процессе извлечения цветных металлов из медно-никелевых руд

Изобретение относится к технологии порошковых металлов, в частности к агломерату металлического кобальта и способу его получения

Изобретение относится к порошковой металлургии и может быть использовано для изготовления уплотнительных элементов, предназначенных для уплотнения фланцевых и штуцерно-торцевых разъемных узлов трубопроводов различного назначения

Изобретение относится к термическому оборудованию с контролируемой атмосферой, в частности к печам для химико-термической обработки металлических порошков

Изобретение относится к порошковой металлургии, в частности к способам получения частиц из диоксида циркония с добавкой окиси алюминия, которые применяются для изготовления конструкционной керамики

Изобретение относится к порошковой металлургии, а именно к получению порошков для цинкнаполненных покрытий

Изобретение относится к смазкам для металлургических порошковых композиций, а также металлопорошковым композициям, содержащим смазку

Изобретение относится к металлам в качестве связующих для изготовления инструментов и/или износостойких покрытий на основе алмаза и/или твердого сплава, в частности к порошку металлического кобальта в качестве связующего для изготовления инструментов и/или износостойких покрытий на основе алмаза и/или твердого сплава, и металлокерамическому изделию, включающему указанное связующее
Изобретение относится к области порошковой металлургии, в частности к способу металлизации порошка диатомита с целью получения высокотехнологичной металлизированной шихты на основе минерального сырья - диатомита, и может быть использовано для получения высокопористых материалов, абразивных материалов и т.д

Изобретение относится к порошковой металлургии и может быть использовано для изготовления спеченных деталей
Наверх