Способ получения высококонденсированного полифосфата аммония

 

Изобретение относится к получению высококонденсированного полифосфата аммония, применяющегося в качестве антипирена в составе огнезащитных вспучивающихся покрытий и при изготовлении огнестойких конструкционных материалов. Сущность изобретения заключается в способе, который включает нагрев в реакционной зоне в присутствии полифосфата аммония при перемешивании ортофосфата аммония и мочевины в мольном соотношении 1:1 в атмосфере газообразного аммиака с образованием низкоплавкой эвтектики, затем нагрев расплава со скоростью 160-200 град. /мин до 230-240oС с кристаллизацией расплава и до 280-300oС с выдержкой для дегидратации продукта реакции при поддержке в реакционной зоне разрежения 0,52-1,29 кПа, последующее охлаждение и измельчение продукта реакции. В результате получают высококонденсированный полифосфат аммония с высокой температурой начала термического разложения (275-285oС). При этом потеря массы продукта составляет 0,22-0,05%. 1 табл.

Изобретение относится к технологии высококонденсированного полифосфата аммония, применяющегося в качестве антипирена в составе огнезащитных вспучивающихся покрытий и при изготовлении огнестойких конструкционных материалов.

Огнезащитная эффективность полифосфатов аммония обусловлена, в частности, их термической устойчивостью. Температура начала потери массы должна быть не ниже 210-220oС, потеря массы при этом также должна быть минимальной (не более 0,2%).

Термическая устойчивость полифосфатов зависит от доли низкомолекулярных полифосфатов в составе продукта, снижающих температуру начала его разложения.

Чем меньше доля низкомолекулярных полифосфатов в продукте, тем выше температура начала разложения продукта, тем эффективнее его огнезащитное действие.

Известен способ получения полифосфата аммония, включающий смешение ортофосфата аммония с мочевиной в мольном соотношении 1:(1-1,2), термическую дегидратацию полученной смеси при 270-300oС в течение 0,5-2 ч в атмосфере газообразного аммиака в присутствии полифосфата аммония, взятого в количестве 0,8-1,4 вес.ч. на 1 вес.ч. смеси (SU, 710927, С 01 В 25/28, 25.01.80).

Основным недостатком способа является введение в зону реакции дополнительного аммиака, взятого в избыточном количестве 5%, что приводит к образованию значительных количеств низкомолекулярных полифосфатов аммония в готовом продукте.

Известен способ получения конденсированных полифосфатов аммония (NН4РО3)n=10 -10000, включающий последовательный нагрев при постоянном перемешивании оксида фосфора (V) и ортофосфата аммония сначала при 50-150oС в присутствии аммиака в течение 5-15 мин при давлении 1-2 мбар, перемешивание реакционной смеси 10-60 мин без поступления аммиака при нормальном давлении в атмосфере азота и затем с аммиаком в течение 1-3 ч под давлением на 1-5 мбар менее нормального, последующий нагрев реакционного продукта до 200-400oС с выдерживанием при этой температуре несколько часов (ЕР, 0088265 A1, C 01 В 25/40, 14.09.89).

Недостатком этого способа является многостадийность и сложность за счет использования оксида фосфора (V) и дополнительного количества аммиака, на 20% превышающего стехиометрическое, введение азота в зону реакции.

Известен способ получения высококонденсированного фосфата аммония цепного строения, включающий нагрев смеси со скоростью до 150 град./мин, содержащей мочевину и ортофосфат аммония при их мольном соотношении (1-1,2):1 при 270-300oС и скорости подачи смеси 95-195 кг/ч при постоянном перемешивании во вращающейся барабанной печи (RU, 2118940 С1, C 01 В 25/38, 20.09.98).

К недостаткам способа можно отнести: недостаточная скорость нагрева для максимально быстрой кристаллизации из плава низкомолекулярных фосфатов; время кристаллизации превышает в данном случае 40 мин; доля низкомолекулярных полифосфатов в готовом продукте составляет 34,7%, соответственно и температура начала его термического разложения не превышает 165oС; максимальная производительность по готовому продукту составляет 33 кг/ч.

Наиболее близким является способ получения конденсированных полифосфатов аммония, включающий последовательный нагрев в присутствии полифосфата аммония при перемешивании эквимолярной смеси ортофосфата аммония и мочевины до 108-118oС в атмосфере газообразного аммиака с плавлением эвтектической смеси моноаммонийфосфат - мочевина, до 230-240oС с кристаллизацией расплава в виде пористой массы и до 280-300oС с выдержкой в течение нескольких часов для получения высококонденсированных полифосфатов аммония (Гришина И.А., Гришина Е. Ф. и др. Разработка процесса получения нового огнезащитного средства "Факкор". Труды НИУИФа, вып. 238, М., 1981, с. 143-155).

Недостатком способа является содержание в готовом продукте значительного количества полифосфатов с в связи с чем температура начала термического разложения продукта соответствует 141oС, при 210oС продукт теряет 0,4% массы.

Технической задачей предлагаемого способа является повышение температуры начала термического разложения высококонденсированного полифосфата аммония, уменьшение потери массы, т.е. повышение его огнезащитной эффективности.

Поставленная техническая задача достигается за счет того, что способ включает нагрев в присутствии полифосфата аммония при перемешивании ортофосфата аммония и мочевины в мольном соотношении 1:1 в атмосфере газообразного аммиака с образованием тугоплавкой эвтектики, затем до 230-240oC со скоростью нагрева расплава эвтектики 160-200 град./мин, с кристаллизацией расплава, и до 280-300oС с той же скоростью, с выдержкой для дегидратации продукта реакции, с поддержанием в реакционной зоне разрежения 0,52-1,29 кПа, последующее охлаждение и измельчение продукта.

Процесс образования высококонденсированного полифосфата аммония из ортофосфата и мочевины складывается из нескольких протекающих в реакционной зоне стадий: - плавление низкотемпературной эвтектики моноаммонийфосфат - мочевина, сопровождающееся значительным поглощением тепла; - дегидратация моноаммонийфосфата с образованием низкомолекулярных полифосфатов аммония (степень полимеризации Рn<10) и кристаллизации их из эвтектики; - дегидратация низкомолекулярных полифосфатов с образованием высококонденсированных полифосфатов аммония (Рn = 400-1050); - гидролиз мочевины за счет выделяющейся при дегидратации воды с выделением в газовую фазу аммиака; - лимитирующей стадией по энергозатратам и производительности является стадия кристаллизации низкомолекулярных полифосфатов из расплава эвтектики моноаммонийфосфат - мочевина.

При недостаточной скорости нагрева (ниже 160 град./мин) стадия кристаллизации растягивается во времени, увеличивается зона жидкофазного состояния материала по длине вращающегося аппарата. При медленной кристаллизации образуется значительный слой гарнисажа, ухудшаются условия теплопередачи, замедляется процесс термической дегидратации, образуется значительное количество полифосфатов с в готовом продукте.

Скорость нагрева эвтектики регламентируется не только необходимой скоростью лимитирующей стадии кристаллизации низкомолекулярных полифосфатов, но и дальнейшей их дегидратацией с образованием высококонденсированного полифосфата аммония. Превышение скорости нагрева выше 200 град./мин приводит к локальным перегревам кристаллизующейся массы и подплавам с образованием полифосфорных кислот.

На скорость дегидратации низкомолекулярных полифосфатов аммония значительно влияет также разрежение в реакционной зоне, способствующее удалению газообразных продуктов реакции. Удаление избыточных количеств паров воды и аммиака из реакционной зоны смещает равновесие реакции конденсации в сторону образования высокополимерных продуктов. Увеличение разрежения выше 1,29 кПа приводит к повышенному пылеуносу продукта из аппарата и является технически нецелесообразным. Разрежение ниже 0,52 кПа не обеспечивает удаление необходимых количеств выделяющихся газов, т.е. способствует замедлению процесса дегидратации.

Пример 1.

Во вращающийся реактор с конвективным обогревом топочными газами подают смесь ортофосфата аммония - диаммонийфосфата в соответствии с ГОСТ 8515-75 "Диаммонийфосфат технический", представляющего собой кристаллы белого цвета размером менее 1 мм, с насыпной массой 0,8-1 т/м3 в количестве 650 кг и гранулированной мочевины в соответствии с ГОСТ 2081-75, марка А, сорт 1, с размером гранул менее 3 мм с насыпной массой 0,71 т/м3 в количестве 350 кг. Мольное соотношение ортофосфата аммония и мочевины составляет 1:1,17. Смесь реактивов подают в реактор со скоростью 100 кг/ч. В реактор подают также полифосфат аммония в виде мелкодисперсного серого порошка с размером частиц менее 0,25 мм с насыпной массой 0,67-1,03 т/м3 в количестве 500 кг со скоростью 50 кг/ч.

В реакционной зоне реактора производят непрерывное перемешивание реагентов и последовательный их нагрев. При 80oС диаммонийфосфат разлагается до моноаммонийфосфата с выделением газообразного аммиака, при 110oС образуется низкоплавкая эвтектика моноаммонийфосфата и мочевины, плавление которой сопровождается частичной дегидратацией моноаммонийфосфата. Реакции идут с поглощением тепла, эндотермический тепловой эффект стадии составляет 70,328 Дж. Выделяющаяся при дегидратации моноаммонийфосфата структурная вода вызывает разложение мочевины. При этом образуется 440 нм3/ч реакционных газов, содержащих 60 об.% аммиака. В реакционной зоне постоянно поддерживают разрежение при помощи дымососа 1,29 кПа для удаления избыточных количеств паров воды и аммиака из сферы реакции (что смещает равновесие реакции конденсации полифосфатов аммония в сторону образования высокополимерного полифосфата аммония).

Последующий нагрев расплава низкотемпературной эвтектики до 230oС и до 280oС происходит в атмосфере газообразного аммиака со скоростью 200 град. /мин с быстрой кристаллизацией из эвтектики конденсированных фосфатов аммония со степенью полимеризации При 280oС в течение 2 часов происходит термическая дегидратация продуктов реакции и образование высококонденсированного полифосфата аммония (п. ф.а.), который выгружают из реактора, охлаждают в бункере естественным путем и подвергают размолу на электромагнитном измельчителе до размера частиц менее 0,25 мм.

Полученный высококонденсированный полифосфат аммония содержит, мас.%: Р2O5общ. 72,30; Р2О5 3,26; доля п.ф.а. 4,50.

Температура начала разложения 285oС, убыль массы при нагреве до этой температуры составляет 0,05%.

Термически устойчив до 324oС (глубокий эндоэффект на дериватограмме). Убыль массы при 324oС составляет 1,0%.

В таблице представлены режимные параметры предложенного способа по примерам 1-3, контрольные сравнительные примеры 4-6 и характеристики полученного высококонденсированного полифосфата аммония.

Как следует их данных, представленных в таблице, по предложенному способу получают высококонденсированный полифосфат аммония с более высокой температурой начала разложения продукта (275-285oС) по сравнению с известным способом (141oС). При этом потеря массы составляет 0,05-0,22% (в известном способе 0,4%). Указанные характеристики обеспечивают увеличение огнезащитной эффективности п.ф.а., полученного по предложенному способу.

Формула изобретения

Способ получения высококонденсированного полифосфата аммония, включающий нагрев в присутствии полифосфата аммония при перемешивании ортофосфата аммония и мочевины в мольном соотношении 1: 1 в атмосфере газообразного аммиака с образованием низкоплавкой эвтектики, затем до 230-240oС с кристаллизацией расплава и до 280-300oС с выдержкой для дегидратации продукта реакции, его последующее охлаждение и измельчение, отличающийся тем, что нагрев расплава низкоплавкой эвтектики до 230-240oС и до 280-300oС ведут со скоростью 160-200 град. /мин, в реакционной зоне поддерживают разрежение 0,52-1,29 КПа.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к способу получения гранулированного удобрения на основе фосфатов аммония, которые широко используется в сельском хозяйстве

Изобретение относится к аппаратурному оформлению производства растворов аммонийфосфатов из экстракционных фосфорных кислот

Изобретение относится к области контроля производства растворов моно- и диаммонийфосфатов, в частности жидких комплексных удобрений (ЖКУ) марки 8-24-0, и может быть использовано в качестве экспресс-контроля за содержанием азота и оксида фосфора (V) в продукте

Изобретение относится к способу получения чистых фосфорных солей из экстракционной фосфорной кислоты, пригодных для использования в микробиологической промышленности и сельском хозяйстве

Изобретение относится к области автоматического регулирования технологических процессов получения обесфторенных фосфатов аммония путем нейтрализации экстракционной фосфорной кислоты аммиаком в присутствии соли кальция, может быть использовано в химической и смежных отраслях промышленности по переработке фосфатного сырья и позволяет повысить производительность процесса

Изобретение относится к производству минеральных удобрений и способствует снижению содержания фтора в растворе при одновременном упрощении и удешевлении процесса

Изобретение относится к способу получения гранулированного фосфата аммония, широко применяемого в сельском хозяйстве

Изобретение относится к получению высококонденсированного полифосфата аммония (ПФА), применяющегося в качестве антипирена в составе огнезащитных вспучивающихся покрытий и при изготовлении огнестойких конструкционных материалов
Изобретение относится к способам производства фосфатов аммония, широко используемых в качестве минеральных удобрений

Изобретение относится к способу получения диаммонийфосфата, используемого в пищевой, фармацевтической и химической отраслях промышленности
Изобретение относится к способу получения диаммонийфосфата, используемого в качестве азотнофосфорного удобрения для различных видов почв
Изобретение относится к способу получения фосфорсодержащего минерального удобрения, а именно диаммонийфосфата, имеющего стабильную темную окраску, пользующегося широким спросом на рынке
Изобретение относится к способам получения фосфатов аммония, а именно аммофоса и диаммонийфосфата, основанных на разложении фосфатного сырья смесью фосфорной и серной кислот с получением фосфорной кислоты и дальнейшей ее переработки на удобрения
Изобретение относится к технологии минеральных удобрений, а именно к получению из аммофоса раствора фосфата аммония, который может быть использован в качестве фосфорсодержащего компонента полностью водорастворимых азотно-фосфорных или азотно-фосфорно-калийных удобрений
Изобретение относится к способу получения фосфорсодержащего минерального удобрения, а именно диаммонийфосфата, имеющего стабильную темную окраску, пользующегося широким спросом на рынке
Изобретение относится к производству фосфатов аммония (а именно аммофоса), широко используемых в сельском хозяйстве в качестве минеральных удобрений
Изобретение относится к способу получения моноаммонийфосфата, широко используемого в качестве минерального удобрения
Наверх