Способ получения нитридов металлов

Изобретение предназначено для химической промышленности и может быть использовано при получении жаропрочных, износо-, эрозионно- и химически стойких изделий. Готовят смесь, содержащую оксид азотируемого металла, порошок азотируемого металла и азид щелочного металла. В качестве азотируемого металла можно использовать Nb, Ti, Zr, Hf, в качестве азида щелочного металла - азид натрия. Из полученной смеси формуют образцы, помещают в реактор, вакуумируют, промывают азотом, заполняют азотом до необходимого давления и воспламеняют вольфрамовой спиралью. Продукт после сгорания разрушают, получают порошок нитрида металла. Выход нитрида металла - не менее 96%, содержание в нем азота - не менее 7,17%, остаточный натрий отсутствует.

 

Изобретение относится к производству порошков тугоплавких материалов и может быть использовано в твердосплавной, керамической, химико-металлургической и других отраслях промышленности для синтеза порошков нитридов металлов, высокой степени чистоты; применяемых для изготовления изделий, обладающих высокой жаростойкостью, износостойкостью, эрозионной стойкостью, стойкостью в агрессивных средах и используемых в различных областях техники.

Известен способ получения металла, включающий приготовление смеси, состоящей из порошка азотируемого металла и азида щелочного или щелочноземельного металла (аналог - [1]).

3Me+NaN3=3MeN+Na

Недостатком способа является то, что продукты синтеза помимо нитридов металлов содержат остаточный натрий в виде Na, Na2O, NaOH, Nа2ТiO3 (Na2ZrO3). Это сказывается, в свою очередь, на степени чистоты целевых нитридов. Остаточный натрий спустя непродолжительное время способен разлагать нитриды на элемент и азот. Кроме того, процесс синтеза нитридов в системе "металл - азид" является небезопасным, так как почти в 50% случаев при вскрытии реактора происходит возгорание натрия свободного и целевой продукт синтеза содержит после этого менее 15-20% нитрида.

Наиболее близким к описываемому изобретению по технической сущности является способ получения нитридов металлов, который заключается в приготовлении экзотермической смеси, состоящей из порошка оксида азотируемого металла, азида металла и редкоземельного металла и воспламенение ее в среде азота под давлением (прототип - [2]).

3МеO2+6Mg+NaN33MeN+6MgO+Na

Недостатком способа-прототипа является:

- продукты синтеза помимо нитридов элементов содержат остаточный оксид редкоземельного металла, который удаляется с помощью НСl от 5 до 10%-весовой концентрации. Это сказывается, в свою очередь, на степени чистоты целевых нитридов.

- По брутто-реакции получается невысокий выход конечного продукта синтеза.

- Невозможность получения однофазного продукта после синтеза.

Технический результат - получение однофазного конечного продукта.

Технический результат заключается в том, что способ получения нитридов металлов включает: приготовление экзотермической смеси, состоящей из оксида азотируемого металла, азида щелочного металла и энергетической составляющей; воспламенение смеси в среде азота под давлением. При этом в качестве энергетической составляющей используется азотируемый металл.

Отличительным признаком предлагаемого способа является то, что в качестве энергетической составляющей используется азотируемый элемент.

Введение порошков азотируемых металлов к смесям порошков оксидов азотируемых металлов с азидами щелочных металлов позволяет получать однофазный продукт высокой степени чистоты, сократить цикл технологических операций на одну операцию при подготовке продукта к использованию, повышать выход конечного продукта по брутто-реакции.

Повышение чистоты получаемого продукта при использовании предлагаемой шихты по сравнению с прототипом, достигается отсутствием в исходной шихте побочных элементов - редкоземельных металлов как в способе-прототипе. А металл азида соединяется с кислородом оксида азотируемого металла с образованием оксида щелочного металла, который при температуре процесса и сбросе давления отводится из зоны реакции (из реактора).

МеO2+4NaN3+хМе=(х+1)MeN+2Na2O+((11-х)/2)N2,

где х≥ 3.

Сокращение технологического цикла по сравнению с прототипом, объясняется отсутствием оксида редкоземельного металла в конечном продукте и получением однофазного продукта, и, следовательно, устраняется операция промывки конечного продукта.

Повышение выхода конечного продукта объясняется приведенным уравнением химической реакции.

Методика проведения синтеза нитридов металлов в режиме СВС - Аз из предлагаемой шихты состоит в следующем:

Из исходных реагентов - порошка оксида азотируемого металла, порошка азотируемого металла, азида щелочного металла, с определенным соотношением реагентов готовят смесь в шаровой мельнице типа пьяной бочки. Затем формуют из приготовленной смеси цилиндрические образцы с насыпной плотностью в кальковом патроне. Образец помещают в реактор постоянного давления, вакуумируют его, промывают два раза азотом, заполняют им до требуемого давления и воспламеняют раскаленной вольфрамовой спиралью. После сгорания дают образцу остыть, вынимают из реактора, разрушают вручную и анализируют на содержание элементов в продукте.

Синтез по предлагаемому способу иллюстрируется следующими примерами, основанными на получение перспективных соединений.

Пример 1

Смесь, содержащую 14.354 г порошка оксида ниобия (чистотой 99.2%), 12.267 г порошка ниобия (чистотой 99.0%) и 17.221 г азида натрия (чистотой 98.7%), воспламеняют в реакторе постоянного давления при избыточном давлении азота 6.0 МПа.

NbO+2NaN3+3Nb=4NbN+Nа2О+N2

Полученный продукт представляет собой порошкообразную массу нитрида ниобия. Выход продукта 96.80%. Содержание азота в нитриде ниобия 12.66%. Остаточный натрий в продукте отсутствует.

Пример 2

Смесь, содержащую 5.224 г порошка оксида титана (чистотой 99.5%), 9.420 г порошка титана (чистотой 99.3%) и 17.115 г азида натрия (чистотой 98.7%), воспламеняют в реакторе постоянного давления при избыточном давлении азота 4.5 МПа.

ТiO2+4NaN3+3Ti=4TiN+2Na2O+4N2

Полученный продукт представляет собой порошкообразную массу нитрида титана. Выход продукта 98.53%. Содержание азота в нитриде титана 22.25%. Остаточный натрий в продукте отсутствует.

Пример 3

Смесь, содержащую 4.707 г порошка оксида титана (чистотой 99.5%), 14.152 г порошка титана (чистотой 99.3%) и 15.424 г азида натрия (чистотой 98.7%), воспламеняют в реакторе постоянного давления при избыточном давлении азота 4.5 МПа.

ТiO2+4NaN3+5Тi=6TiN+2Na2O+3N2

Полученный продукт представляет собой порошкообразную массу нитрида титана. Выход продукта 98.53%. Содержание азота в нитриде титана 22.25%. Остаточный натрий в продукте отсутствует.

Пример 4

Смесь, содержащую 7.607 г порошка оксида циркония (чистотой 99.5%), 16.979 г порошка циркония (чистотой 99.0%) и 16.180 г азида натрия (чистотой 98.7%), воспламеняют в реакторе постоянного давления при избыточном давлении азота 3.5 МПа.

ZrO2+4NaN3+3Zr-4ZrN+2Na2O+4N2

Полученный продукт представляет собой порошкообразную массу нитрида циркония. Выход продукта 98.74%. Содержание азота в нитриде циркония 13.16%. Остаточный натрий в продукте отсутствует.

Пример 5

Смесь, содержащую 6.682 г порошка оксида циркония (чистотой 99.5%), 24.864 г порошка циркония (чистотой 99.0%) и 14.219 г азида натрия (чистотой 98.7%), воспламеняют в реакторе постоянного давления при избыточном давлении азота 3.5 МПа.

ZrO2+4NaN3+5Zr=6ZrN+2Na2O+3N2

Полученный продукт представляет собой порошкообразную массу нитрида циркония. Выход продукта 98.74%. Содержание азота в нитриде циркония 13,16%. Остаточный натрий в продукте отсутствует.

Пример 6

Смесь, содержащую 13.177 г порошка оксида гафния (чистотой 99.0%), 33.698 г порошка гафния (чистотой 98.5%) и 16.325 г азида натрия (чистотой 98.7%), воспламеняют в реакторе постоянного давления при избыточном давлении азота 3.0 МПа.

НfO2+4NaN3+3Hf=4HfN+2Na2O+4N2

Полученный продукт представляет собой порошкообразную массу нитрида гафния. Выход продукта 98.34%. Содержание азота в нитриде гафния 7.17%. Остаточный натрий в продукте отсутствует.

Пример 7

Смесь, содержащую 11.630 г порошка оксида гафния (чистотой 99.0%), 49.574 г порошка гафния (чистотой 98.5%) и 14.413 г азида натрия (чистотой 98.7%), воспламеняют в реакторе постоянного давления при избыточном давлении азота 3.0 МПа.

HfO2+4NaN3+5Hf=6HfN+2Na2O+3N2

Полученный продукт представляет собой порошкообразную массу нитрида гафния. Выход продукта 98.34%. Содержание азота в нитриде гафния 7.17%. Остаточный натрий в продукте отсутствует.

Источники информации

1. Косолапов В.Т., Левашов А.Ф., Марков Ю.М., Бичуров Г.В. Синтез нитридов титана, циркония в режиме горения с применением твердых азотирующих агентов/Тугоплавкие нитриды: Сб. науч. тр. - Киев: Наукова думка, 1983. - С.27-30. - аналог.

2. Патент 4.459.363 (США) от 10.07.1984. Синтез тугоплавких материалов//Дж.Б. Холт. - Сан Хосе, Калифорния, США (№ заявки 523.556, дата регистрации 16.08.1983) - прототип.

Способ получения нитридов металлов, включающий приготовление экзотермической смеси, состоящей из оксида азотируемого металла, азида щелочного металла и энергетической составляющей, воспламенение ее в среде азота под давлением, отличающийся тем, что в качестве энергетической составляющей используется азотируемый металл.



 

Похожие патенты:

Изобретение относится к области создания перспективных материалов для эксплуатации в экстремальных условиях (высокие или низкие температуры, давление, скорости, напряжения и т.д.).

Изобретение относится к области металлургии производства тугоплавких материалов - карбонитридов, а именно к созданию способа получения карбонитрида титана, позволяющего создать однородный продукт заданного состава с минимальным содержанием свободного углерода.
Изобретение относится к области порошковой металлургии и касается способа получения порошков тугоплавких соединений на основе карбидных или нитридных соединений титана, которые могут быть использованы для производства режущего инструмента, металлической арматуры и т.п.

Изобретение относится к металлургии тугоплавких соединений редких и переходных металлов, в частности, к металлургии титана. .

Изобретение относится к технологии производства тугоплавких соединений, а именно ультрадисперсного порошка карбонитрида титана, пригодного для использования в различных областях техники.
Изобретение относится к области порошковой технологии, а именно к получению материалов, содержащих нитриды металлов, и может найти применение при изготовлении керамических и композиционных материалов и дисперсно-упрочненных изделий

Изобретение относится к технологии получения нитридов, в частности нитрида титана, который представляет собой твердый, тугоплавкий и химически инертный материал, который применяют в качестве покрытий для режущих и обрабатывающих инструментов, для шлифовки, при изготовлении жаропрочных материалов, износостойких и декоративных покрытий
Изобретение относится к области получения порошков тугоплавких соединений, которые могут быть использованы для получения высокотвердой керамики и защитных износостойких покрытий. Способ получения нитрида циркония заключается в проведении самораспространяющегося высокотемпературного синтеза экзотермической смеси, состоящей из оксида циркония и энергетической составляющей, в присутствии азотирующего агента, при этом производится закалка промежуточных продуктов прерыванием процесса горения через 20-90 секунд после инициирования, в экзотермическую смесь дополнительно вводят активирующую добавку нанопорошка оксида иттрия, в качестве энергетической составляющей используют нанопорошок циркония, при этом размер частиц оксида циркония в 500-1000 раз меньше размера частиц циркония, при следующем соотношении компонентов, мас.%: энергетическая составляющая - 60-100, оксид циркония - 0-40, активирующая добавка (вводится сверх 100%) - 1-3. Технический результат изобретения заключается в повышении выхода нитрида циркония при простоте его получения. 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к нанотехнологии азот-углеродсодержащих соединений титана, которые могут быть использованы в композиционном материаловедении, в том числе в составе модифицирующих комплексов алюминиевых, железо-углеродистых и никелевых сплавов. Производят генерацию плазменного потока азота, вводят в него титансодержащее порошкообразное сырье и газообразный углеводород, их смешивают, формируют реакционную парогазовую карбонитридообразующую смесь требуемого состава, проводят конденсацию карбонитрида, его принудительно охлаждают и выделяют из потока. В качестве титансодержащего порошкообразного сырья используют микропорошок титана крупностью +0,5-5 мкм, в качестве газообразного углеводорода - природный газ с содержанием метана не менее 90,0% об., которые вводят вместе при температуре потока не ниже 5200 К, продукты взаимодействия охлаждают при температуре 2800-2000 К, после чего проводят их пассивацию и коагуляцию парами пропеновой кислоты, вводимой в поток при мольном соотношении титана и пропеновой кислоты 1:(0,025-0,075). Технический результат изобретения заключается в повышении качества и увеличении выхода нанопорошка карбонитрида титана, в значительном снижении содержания примеси свободного пиролитического углерода, в защите наночастиц порошка от поверхностного окисления, в повышении эффективности его улавливания на фильтре. 1 табл., 7 пр.
Изобретение относится к получению порошка карбонитрида титана. Способ включает генерирование потока термической плазмы в плазменном реакторе с ограниченным струйным течением, подачу в поток термической плазмы паров тетрахлорида титана, газообразного углеводорода и азота с обеспечением их взаимодействия, осаждение порошка карбонитрида титана на стенки реактора с температурой в диапазоне 300-700°С и последующее его удаление. Обеспечивается снижение содержания примесей хлора в порошке. 1 пр.
Наверх