Способ получения порошка нитрида титана


 


Владельцы патента RU 2488549:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Изобретение относится к технологии получения нитридов, в частности нитрида титана, который представляет собой твердый, тугоплавкий и химически инертный материал, который применяют в качестве покрытий для режущих и обрабатывающих инструментов, для шлифовки, при изготовлении жаропрочных материалов, износостойких и декоративных покрытий. Порошок нитрида титана получают самораспространяющимся высокотемпературным синтезом композиционных смесей на основе грубодисперсного порошка титана и мелкодисперсного порошка оксида титана на воздухе в свободно насыпанном состоянии. Оксид титана вводят в количестве 20-40 мас.% в исходную смесь, а процесс горения инициируют локальным нагревом с помощью нихромовой спирали на воздухе при атмосферном давлении. Технический результат изобретения заключается в упрощении процесса за счет использования композиционных смесей грубодисперсного порошка титана и мелкодисперсного порошка оксида титана без дополнительной механической обработки и атмосферного воздуха в качестве азотсодержащей среды. 1 табл., 1 пр.

 

Изобретение относится к технологии получения нитридов, в частности нитрида титана, который широко используют в современной электронной и оптоэлектронной технике, для получения технической керамики, жаропрочных и износостойких материалов, покрытий для режущих и обрабатывающих инструментов, для шлифовки драгоценных камней, а также в микроэлектронике благодаря высокой прочности и химической стабильности.

Известен способ получения порошка нитрида титана путем термического разложения в автоклаве (Т=650°C) фторотитаната аммония ((NH4)2TiF6) в присутствии металлического натрия (Meining Wu. Low temperature synthesis of nanocrystalline titanium nitride from a single-source precursor of titanium and nitrogen // Journal of Alloys and Compounds. 2009. №486. p.223-226). Недостатками данного метода являются образование токсичных продуктов - фторида натрия и аммиака помимо нитрида титана. Еще один из способов получения нитрида титана заключается в совместном помоле при комнатной температуре порошка титана и мочевины (J.F.Sun, M.Z.Wang, Y.C.Zhao, X.P.Li, B.Y.Liang. Synthesis of titanium nitride powders by reactive ball milling of titanium and urea // Journal of Alloys and Compounds. 2009. №482. p.L29-L31) в качестве недостатков метода стоит отметить длительность процесса от 20 до 70 часов и загрязнение конечного продукта карбидом вольфрама - материалом помольных шаров.

Наиболее близким к предлагаемому изобретению по технической сущности является способ образования нитрида титана при твердофазном азотировании металлического титана чистым азотом (A.S.Bolokang, M.J.Phasha. Formation of titanium nitride produced from nanocrystalline titanium powder under nitrogen atmosphere // Int. Journal of Refractory Metals and Hard Materials. 2010. №28. p.610-615). Недостатками предлагаемого метода являются длительный предварительный помол порошка титана (12-20 часов) и необходимость использования особо чистых реагентов (содержание основного вещества 99,999%).

Основной технической задачей данного изобретения является существенное упрощение технических приемов синтеза по сравнению с прототипом: использование воздуха в качестве азотсодержащего реагента, исключение стадии помола исходных реагентов и использование тепла экзотермической реакции горения титансодержащей шихты на открытом воздухе при проведении самораспространяющегося высокотемпературного синтеза (СВС) нитрида титана.

Поставленная техническая задача достигается проведением самораспространяющегося высокотемпературного синтеза композиционных смесей на основе грубодисперсного порошка титана и мелкодисперсного порошка оксида титана TiO2 на воздухе в свободнонасыпанном состоянии, оксид титана вводят в количестве 20-40 мас.% в исходную смесь, а процесс горения инициируют локальным нагревом с помощью нихромовой спирали на воздухе при атмосферном давлении.

Применение грубодисперсных порошков металлов без предварительного помола в течение длительного времени в технологии синтеза нитридов является экономически более выгодным. Использование чистого титана в качестве основного компонента при СВС на воздухе приводит к его частичному плавлению и спеканию с минимальным выходом нитридной фазы (см. таблица). В качестве инертного компонента, препятствующего плавлению титана, использовали оксид титана. Применение мелкодисперсного оксида титана обусловлено необходимостью образования изолирующей прослойки между крупными частицами титана, которая способствует снижению скорости горения и, как следствие, более полному превращению исходных компонентов. Регулирование скорости горения обеспечивает более полное протекание реакции образования нитрида титана.

Пример конкретного выполнения.

Для приготовления исходной смеси используют порошок титана дисперсностью 630-1000 мкм. Оксид титана (TiO2) с размером частиц менее 80 мкм вводят в количестве 20 мас.% в исходную смесь. Смешение исходных компонентов проводят сухим способом. Готовую смесь в свободнонасыпанном состоянии помещают на огнеупорную подложку. Процесс горения инициируют локальным нагревом образца с помощью нихромовой спирали. После локального инициирования, фронт горения с высокой скоростью распространяется по образцу, температура образца быстро (за 1-2 с) увеличивается, распространение тепловой волны от точки воспламенения к периферии образца сопровождается ярким свечением.

Введение порошка оксида титана в количестве 50 мас.% и более приводит к затруднению инициирования процесса горения и недогоранию исходных смесей, а менее 20 мас.% - к плавлению и интенсивному спеканию порошка титана (см. таблица). Оптимальным количеством добавки оксида титана является 20-40 мас.%, что обеспечивает максимальный выход нитрида титана с образованием рыхлого спека.

Продукты сгорания грубодисперсных порошков титана и его оксида представляли собой высокопористые спеки, легко поддающиеся дальнейшей обработке. Нитрид титана присутствовал в продуктах сгорания как преобладающая фаза TiN (76-82%), TiO2 (10-12%), Ti (8-12%).

Технический результат достигается за счет использования в качестве азотсодержащей среды атмосферного воздуха и проведения процесса синтеза посредством СВС на воздухе при атмосферном давлении свободнонасыпанных композиционных смесей на основе грубодисперсного порошка титана, не требующего предварительной механической обработки.

Способ получения порошка нитрида титана
Таблица
Содержание оксида титана в исходной смеси, мас.% Режим горения Скорость горения, г/с Продукты сгорания, % Примечание
TiN TiO2 Ti
0 Легко инициируется Самоподдерживающийся, устойчивый 0,70 40 20 40 Легко инициируется
Спек плотный, полностью оплавлен изнутри
10 0,65 60 15 25 Легко инициируется
Спек частично оплавлен
20 0,50 76 12 12 Легко инициируется
Рыхлый спек
30 0,40 78 12 10 Легко инициируется
Рыхлый спек
40 0,40 82 10 8 Легко инициируется
Рыхлый спек
50 и более Не инициируется Не определена - - - Инициируется при дополнительных энергетических затратах
Большое количество недогоревших исходных компонентов

Способ получения порошка нитрида титана, заключающийся в проведении самораспространяющегося высокотемпературного синтеза композиционных смесей на основе грубодисперсного порошка титана и мелкодисперсного порошка оксида титана на воздухе в свободно насыпанном состоянии, отличающийся тем, что оксид титана вводят в количестве 20-40 мас.% в исходную смесь, а процесс горения инициируют локальным нагревом с помощью нихромовой спирали на воздухе при атмосферном давлении.



 

Похожие патенты:

Изобретение относится к химической промышленности, в частности к получению диоксида титана путем окисления жидкого тетрахлорида титана. .
Изобретение относится к области пирогидрометаллургии, в частности к технологии получения диоксида титана из титансодержащего сырья, предназначено для усовершенствования технологических процессов переработки и растворения титановых руд, и может быть использовано в лакокрасочной промышленности для получения белого пигмента, в производстве катализаторов, пластмасс, диэлектриков и других отраслях промышленностиИзвестен способ переработки титансодержащего сырья, основанный на увеличении растворимости минерала за счет спекания его с фторидным реагентом с последующей термообработкой профторированной массы для разделения продуктов фторирования путем возгонки (RU 2365647 С2, 2009 г.), недостатком которого является использование агрессивных фторидных сред и дорогостоящих реагентов, таких как фторид аммония.

Изобретение относится к способу получения нанодисперсного диоксида титана, используемого в качестве фотокатализатора. .
Изобретение относится к способу получения наночастиц оксида переходного металла, покрытых аморфным углеродом. .
Изобретение относится к технологии минеральных дубителей и может быть использовано при получении титанового дубителя из титансодержащего сырья, в частности из гидроксида титана.
Изобретение относится к получению диоксида титана (TiO2) многостадийным окислением тетрахлорида титана (TiCi4), путем добавления кислорода к тетрахлориду титана в несколько стадий.
Изобретение относится к пигменту на основе диоксида титана с высокой непрозрачностью, а также - к способу его получения и применения для изготовления декоративной бумаги или декоративной фольги.

Изобретение относится к способу получения фотокаталитических покрытий диоксида титана на стекле, а также к составам, используемым для получения таких покрытий. .
Изобретение относится к области порошковой технологии, а именно к получению материалов, содержащих нитриды металлов, и может найти применение при изготовлении керамических и композиционных материалов и дисперсно-упрочненных изделий.
Изобретение относится к производству порошков тугоплавких материалов и может быть использовано в твердосплавной, керамической, химико-металлургической и других отраслях промышленности для синтеза порошков нитридов металлов, высокой степени чистоты; применяемых для изготовления изделий, обладающих высокой жаростойкостью, износостойкостью, эрозионной стойкостью, стойкостью в агрессивных средах и используемых в различных областях техники.

Изобретение относится к области создания перспективных материалов для эксплуатации в экстремальных условиях (высокие или низкие температуры, давление, скорости, напряжения и т.д.).

Изобретение относится к области металлургии производства тугоплавких материалов - карбонитридов, а именно к созданию способа получения карбонитрида титана, позволяющего создать однородный продукт заданного состава с минимальным содержанием свободного углерода.
Изобретение относится к области порошковой металлургии и касается способа получения порошков тугоплавких соединений на основе карбидных или нитридных соединений титана, которые могут быть использованы для производства режущего инструмента, металлической арматуры и т.п.

Изобретение относится к металлургии тугоплавких соединений редких и переходных металлов, в частности, к металлургии титана. .

Изобретение относится к технологии производства тугоплавких соединений, а именно ультрадисперсного порошка карбонитрида титана, пригодного для использования в различных областях техники.
Изобретение относится к области получения порошков тугоплавких соединений, которые могут быть использованы для получения высокотвердой керамики и защитных износостойких покрытий. Способ получения нитрида циркония заключается в проведении самораспространяющегося высокотемпературного синтеза экзотермической смеси, состоящей из оксида циркония и энергетической составляющей, в присутствии азотирующего агента, при этом производится закалка промежуточных продуктов прерыванием процесса горения через 20-90 секунд после инициирования, в экзотермическую смесь дополнительно вводят активирующую добавку нанопорошка оксида иттрия, в качестве энергетической составляющей используют нанопорошок циркония, при этом размер частиц оксида циркония в 500-1000 раз меньше размера частиц циркония, при следующем соотношении компонентов, мас.%: энергетическая составляющая - 60-100, оксид циркония - 0-40, активирующая добавка (вводится сверх 100%) - 1-3. Технический результат изобретения заключается в повышении выхода нитрида циркония при простоте его получения. 1 табл., 1 пр.
Наверх