Способ получения нитридов металлов

Изобретение может быть использовано для изготовления керамических и композиционных материалов. Экзотермическую смесь, состоящую из оксида азотируемого металла и энергетической составляющей, воспламеняют на воздухе при атмосферном давлении. В качестве энергетической добавки используют нанопорошок алюминия. В качестве оксида азотируемого металла используют TiO2 или ZrO2 в количестве 60-80 мольн.%. Изобретение позволяет упростить технологию и удешевить получаемую продукцию. 2 табл.

 

Изобретение относится к области порошковой технологии, а именно к получению материалов, содержащих нитриды металлов, и может найти применение при изготовлении керамических и композиционных материалов и дисперсно-упрочненных изделий.

Известен способ [Патент РФ №2083487, МПК С01В 21/06, опубл. 10.07.1997] получения нитридов металлов, включающий подачу в реактор порошка металла и азота под давлением 0,1-5,0 МПа с последующим воспламенением.

Недостатком этого способа является использование специального оборудования, что усложняет технологию. Кроме того, в данном способе используется чистый азот под высоким давлением, что удорожает получаемый продукт.

Наиболее близким по технической сущности является способ получения нитридов металлов [Патент РФ №2256604, МПК С01В 21/076, опубл. 27.11.2004], который был выбран за прототип. Согласно этому способу приготавливают смесь из оксида азотируемого металла, азида щелочного металла и азотируемого металла как энергетической составляющей. Затем смесь воспламеняют в среде азота под давлением.

Недостатком этого способа является использование высокого давления в процессе синтеза и наличие в продуктах синтеза щелочи, которая может привести к их деградации. Кроме того, в этом способе используется дорогостоящий и опасный при хранении реагент - азид натрия.

Основной технической задачей изобретения является упрощение технологии за счет использования воздуха в качестве азотирующего агента, а в качестве энергетической добавки - нанопорошка алюминия.

Основная техническая задача достигается тем, что в заявляемом способе получения нитридов металлов, согласно которому, так же, как и в прототипе, приготовляют экзотермическую смесь, состоящую из оксида азотируемого металла и энергетической составляющей и воспламеняют ее в присутствии азотирующего агента, в соответствии с предложенным решением, в качестве азотирующего агента используют воздух при атмосферном давлении, а в качестве энергетической составляющей используют нанопорошок алюминия при следующем соотношении компонентов, мольн.%:

энергетическая составляющая 60-80
оксид азотируемого металла остальное

В результате использования воздуха при атмосферном давлении в качестве азотирующего агента происходит упрощение технологии, так как нет необходимости в применении в качестве реагентов чистого азота и дорогостоящего и опасного при хранении азида натрия и высокого давления для проведения процесса синтеза. Кроме того, упрощение технологии происходит за счет использования нанопорошка алюминия в качестве энергетической добавки, так как нанопорошок алюминия в отличие от порошков титана и циркония не склонен к пирофорности, устойчив на воздухе до 400-450°С, но при инициировании хорошо горит на воздухе, что делает возможным проведение синтеза без использования сложного оборудования (реактора).

Перечень иллюстративного материала

В таблице 1 приведены составы исходных смесей оксида титана и нанопорошка алюминия и содержание в полученных продуктах нитрида титана по отношению к остаточному оксиду титана.

В таблице 2 приведены составы исходных смесей оксида циркония и нанопорошка алюминия и содержание в полученных продуктах нитрида циркония по отношению к остаточному оксиду циркония.

Пример конкретного выполнения

Для эксперимента в качестве исходных компонентов использовали порошок оксида азотируемого металла - TiO2 (промышленный порошок марки хч), ZrO2 (промышленный порошок марки осч) и нанопорошок алюминия (получен с помощью электрического взрыва алюминиевых проводников на опытно-промышленной установке УДП-4Г, напряжение на взрываемом проводнике - 24 кВ, энергия, вводимая в проводник, - 1,45 энергии сублимации взрываемого проводника, среда - аргон, форма частиц - сферическая, содержание металлического алюминия - 92 мас.%, площадь удельной поверхности - 12 м2/г).

Из порошков готовили смеси массой 4 г при следующем соотношении компонентов, мольн.%:

энергетическая составляющая, 40; 56; 60; 70; 76; 80; 86; 90;
оксид азотируемого металла остальное

Образцы смесей приготавливали методом сухого смешения с применением малых нагрузок, смешение осуществляли в течение 15 минут. Подготовленные образцы высыпали на подложку из нержавеющей стали (толщина листа - 3 мм, марка стали 18Х12Н10Т), придавая насыпанному материалу коническую форму для улучшенной фильтрации воздуха в зону реакции. Образцы воспламеняли в воздухе: процесс горения инициировали пропусканием импульса электрического тока (6 А) через нихромовую спираль (диаметр проволоки - 0,3 мм), находящуюся в контакте с исходной смесью. В результате сгорания образовывались спеки, которые измельчали с помощью шаровой мельницы (помол в течение 0,5 часа) и подвергали рентгенофазовому анализу (метод порошка, дифрактометр ДРОН-3М, CuКа-излучение).

В таблицах 1 и 2 представлены составы исходных смесей и содержание нитрида металла. При содержании в исходной смеси энергетической составляющей менее 60 мольн.% выход нитрида азотируемого металла низок вследствие невысокой температуры горения смесей, которая недостаточна для химического связывания азота воздуха [1]. При содержании в исходной смеси нанопорошка алюминия более 80 мольн.% прирост содержания нитридов азотируемых металлов замедляется, поэтому дальнейшее повышение содержания нанопорошка алюминия в исходной смеси нецелесообразно из-за удорожания получаемого продукта. Наиболее оптимальный состав смесей содержит от 60 до 80 мольн.% нанопорошка алюминия.

Литература

1. Ильин А.П., Громов А.А. Горение алюминия и бора в сверхтонком состоянии. Томск: Изд-во Том. ун-та, 2003, 155 с.

Таблица 1
Содержание энергетической составляющей в исходной смеси, мольн.% Содержание оксида титана в исходной смеси, мольн.% Содержание в полученных продуктах нитрида титана по отношению к остаточному оксиду титана, % Примечание
30 70 2
45 55 6
60 40 31 Заявляемый способ
63 37 33
76 24 98
80 20 91
86 14 92

Таблица 2
Содержание энергетической составляющей в исходной смеси, мольн.% Содержание оксида циркония в исходной смеси, мольн.% Содержание в полученных продуктах нитрида циркония по отношению к остаточному оксиду циркония, % Примечание
40 60 2
56 44 7
60 40 32 Заявляемый способ
70 30 68
76 24 72
80 20 78
86 14 87
90 10 98

Способ получения нитридов металлов, включающий приготовление экзотермической смеси, состоящей из оксида азотируемого металла (TiO2 или ZrO2) и энергетической составляющей, и ее воспламенение в присутствии азотирующего агента, отличающийся тем, что в качестве азотирующего агента используют воздух при атмосферном давлении, а в качестве энергетической составляющей используют нанопорошок алюминия при следующем соотношении компонентов, мол.%:

энергетическая составляющая 60-80
оксид азотируемого металла остальное



 

Похожие патенты:
Изобретение относится к производству порошков тугоплавких материалов и может быть использовано в твердосплавной, керамической, химико-металлургической и других отраслях промышленности для синтеза порошков нитридов металлов, высокой степени чистоты; применяемых для изготовления изделий, обладающих высокой жаростойкостью, износостойкостью, эрозионной стойкостью, стойкостью в агрессивных средах и используемых в различных областях техники.

Изобретение относится к области создания перспективных материалов для эксплуатации в экстремальных условиях (высокие или низкие температуры, давление, скорости, напряжения и т.д.).

Изобретение относится к области металлургии производства тугоплавких материалов - карбонитридов, а именно к созданию способа получения карбонитрида титана, позволяющего создать однородный продукт заданного состава с минимальным содержанием свободного углерода.
Изобретение относится к области порошковой металлургии и касается способа получения порошков тугоплавких соединений на основе карбидных или нитридных соединений титана, которые могут быть использованы для производства режущего инструмента, металлической арматуры и т.п.

Изобретение относится к металлургии тугоплавких соединений редких и переходных металлов, в частности, к металлургии титана. .

Изобретение относится к технологии производства тугоплавких соединений, а именно ультрадисперсного порошка карбонитрида титана, пригодного для использования в различных областях техники.

Изобретение относится к технологии получения нитридов, в частности нитрида титана, который представляет собой твердый, тугоплавкий и химически инертный материал, который применяют в качестве покрытий для режущих и обрабатывающих инструментов, для шлифовки, при изготовлении жаропрочных материалов, износостойких и декоративных покрытий
Изобретение относится к области получения порошков тугоплавких соединений, которые могут быть использованы для получения высокотвердой керамики и защитных износостойких покрытий. Способ получения нитрида циркония заключается в проведении самораспространяющегося высокотемпературного синтеза экзотермической смеси, состоящей из оксида циркония и энергетической составляющей, в присутствии азотирующего агента, при этом производится закалка промежуточных продуктов прерыванием процесса горения через 20-90 секунд после инициирования, в экзотермическую смесь дополнительно вводят активирующую добавку нанопорошка оксида иттрия, в качестве энергетической составляющей используют нанопорошок циркония, при этом размер частиц оксида циркония в 500-1000 раз меньше размера частиц циркония, при следующем соотношении компонентов, мас.%: энергетическая составляющая - 60-100, оксид циркония - 0-40, активирующая добавка (вводится сверх 100%) - 1-3. Технический результат изобретения заключается в повышении выхода нитрида циркония при простоте его получения. 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к нанотехнологии азот-углеродсодержащих соединений титана, которые могут быть использованы в композиционном материаловедении, в том числе в составе модифицирующих комплексов алюминиевых, железо-углеродистых и никелевых сплавов. Производят генерацию плазменного потока азота, вводят в него титансодержащее порошкообразное сырье и газообразный углеводород, их смешивают, формируют реакционную парогазовую карбонитридообразующую смесь требуемого состава, проводят конденсацию карбонитрида, его принудительно охлаждают и выделяют из потока. В качестве титансодержащего порошкообразного сырья используют микропорошок титана крупностью +0,5-5 мкм, в качестве газообразного углеводорода - природный газ с содержанием метана не менее 90,0% об., которые вводят вместе при температуре потока не ниже 5200 К, продукты взаимодействия охлаждают при температуре 2800-2000 К, после чего проводят их пассивацию и коагуляцию парами пропеновой кислоты, вводимой в поток при мольном соотношении титана и пропеновой кислоты 1:(0,025-0,075). Технический результат изобретения заключается в повышении качества и увеличении выхода нанопорошка карбонитрида титана, в значительном снижении содержания примеси свободного пиролитического углерода, в защите наночастиц порошка от поверхностного окисления, в повышении эффективности его улавливания на фильтре. 1 табл., 7 пр.
Изобретение относится к получению порошка карбонитрида титана. Способ включает генерирование потока термической плазмы в плазменном реакторе с ограниченным струйным течением, подачу в поток термической плазмы паров тетрахлорида титана, газообразного углеводорода и азота с обеспечением их взаимодействия, осаждение порошка карбонитрида титана на стенки реактора с температурой в диапазоне 300-700°С и последующее его удаление. Обеспечивается снижение содержания примесей хлора в порошке. 1 пр.
Наверх