Способ получения пентоксида тантала

Изобретение относится к области гидрохимической фторидной переработки танталового сырья на чистые соединения тантала и ниобия. Фтортанталат калия нагревают в интервале 220-250°С 1-3 раза с промежуточным охлаждением до 70-80°С до получения крупности -100+40 мкм более 85%. Затем проводят аммиачную обработку при комнатной температуре и обработку соляной кислотой. Циклы аммиачной и солянокислой обработок выполняют 2-4 раза. Результат изобретения: полное разложение фтортанталата калия с образованием гранулированного осадка, повышение чистоты пентоксида тантала, снижение требований по чистоте к исходному материалу и реагентам, снижение коррозионного воздействия на оборудование. 1 табл.

 

Способ относится к области гидрохимической фторидной переработки танталового сырья на чистые соединения тантала и ниобия.

В настоящее время основным методом переработки танталового сырья является гидрохимический, заключающийся в разложении концентратов плавиковой (или плавиковой и серной) кислотой, экстракционном выделении и разделении тантала и ниобия с получением раствора фтортанталата аммония, являющегося исходным для получения чистых фтортанталата калия (ФТК) и пентоксида тантала.

Известен способ (1) получения пентоксида тантала нейтрализацией раствора фтортанталата аммония раствором гидроксида аммония до значения рН >7,5, отделением выпавшего осадка фильтрацией, промывкой его водой, сушкой и прокаливанием.

Недостатками способа являются:

- образование при нейтрализации раствора фтортанталата аммония не гидроксида тантала, а смеси основных фторидов, по составу близкой к формуле (NH4)2Ta(OH)5F2. Осадок содержит до 10-12% фтора. Удаление фтора и превращение основных фторидов в пентоксид происходит при высокотемпературной обработке, связанной с выделением в газовую фазу фторида аммония и фтористого водорода, что ведет к сильной коррозии оборудования и загрязнению продукта;

- большая влажность осадка, до 85%, плохая фильтруемость и отстой пульп, что делает невозможным полное удаление содержащего большое количество NH4F маточного раствора промывками.

Известен способ (2), по которому из раствора "фтортанталата аммония получают фтортанталат калия, который при нагревании до 70-80°С обрабатывается раствором аммиака при соотношении Т:Ж=1:8-1:10 в течение 8-10 часов и затем 5% раствором HCl при соотношении Т:Ж=1:10-1:15 в течение одного часа. Продуктом обработки фтортанталата калия растворами аммиака и HCl являлся пентоксид тантала, что было подтверждено химическим и ренгеноструктурным методами анализа. Содержание фтора в пентоксиде тантала составляло до 1%" (цитата). Других сведений авторы не приводят. А поскольку метод представляет практический интерес, была сделана попытка его воспроизводства в лабораторных условиях.

Установлено, что декларируемый конечный результат может быть получен только, если применяется очень мелкий фтортанталат калия с размером частиц менее 2 мкм (осаждение из холодного раствора сухим хлористым калием при перемешивании), а полученный после аммиачной и кислотной обработок продукт прокаливается при температуре выше 900°С.

При этом выявлены следующие недостатки:

- высокая влажность (до 25%) мелкодисперсного ФТК, что снижает степень его очистки от примесей;

- обработка ФТК раствором аммиака при температуре 70-80°С в течение длительного времени не имеет смысла, так как NH3 улетает из раствора менее чем за 1 час;

- после аммиачной обработки образуется студенистый, плохо фильтрующийся осадок с влажностью более 70%, близкий к составу [K,NH4]2Ta(OH)5F2;

- после кислотной обработки образуется осадок плохо фильтрующийся, в сухом виде содержащий до 3-4% фтора и 1-1,5% калия. Маточный раствор содержит до 3 г/л тантала, что снижает извлечение тантала в пентоксид;

- прокалка сухого продукта сопровождается сильным газовыделением. Прокаленный продукт содержит до 2 % калия. Он химически не активен.

Задача изобретения - создание технологии, исключающей вышеуказанные недостатки, позволяющей повысить чистоту пентоксида тантала, снизить требования по чистоте к исходному материалу, реагентам, уменьшить коррозионное действие на оборудование, на основе способа, реализующего следующие принципиальные отличия:

- в качестве исходного используют ФТК крупностью в пределах -100+40 мкм более 85%. Это достигается 1-3-кратным нагреванием крупнокристаллического ФТК до температуры 220-250°С с промежуточным охлаждением до 70-80°С. В результате многократного полиморфного превращения кристаллы самоизмельчаются до требуемых размеров.

Обработка аммиачной водой ФТК приводит к образованию (NH4)KTa(OH)5F2 с сохранением размера и формы первоначальных частиц. Осадок быстро (1-2 мин) и полностью, с образованием плотного слоя, отстаивается. Это позволяет в дальнейшем исключить фильтрацию при промежуточных операциях. Аммиачная обработка проводится при комнатной температуре, что позволяет сократить в 2-2,5 раза расход аммиачной воды;

- после первой аммиачной обработки проводят водную промывку осадка, что исключает потери тантала при кислотной обработке.

В зависимости от требуемой чистоты конечного продукта проводят повторение циклов аммиачная-солянокислая обработка (2-4 цикла).

Последовательность и параметры операций указаны на технологической схеме 1 (см. в конце описания).

Предлагаемая технология обладает следующими преимуществами:

1. Высокое извлечение тантала в пентоксид за счет низкого содержания его в аммиачных и кислых фильтратах (на 3 уровне 0,01 г/л).

2. Возможность проведения всех операций разложения ФТК в одном реакторе без перегрузки осадка за счет применения декантации для отделения растворов.

3. Высокая степень разложения ФТК уже через 2 цикла. Содержание в пентоксиде тантала, высушенном при 120°С, составляет:

фтора 0,5%
калия 0,006%

После 3 циклов

фтора 0,12%
калия 0,002%

После 4 циклов

фтора <0,1 %
калия<0,002%

Дальнейшее повторение циклов определяемого результата не дает.

4. После двух и более циклов сухой осадок имеет состав Та2O5·3Н2О. Для перевода его в пентоксид тантала достаточна температура 500°С.

5. Низкое содержание фтора в осадке снижает коррозию сушильного и прокалочного оборудования.

6. На операциях разложения ФТК допускается применение хозяйственно-питьевой или артезианской воды и реагентов марки «технический», без механических загрязнений. И только на последней кислотной обработке обязательно применение дистиллированной воды и соляной кислоты марки «ЧДА», «ХЧ».

7. Повторение кислотных обработок гидроксида приводит к эффективной очистке тантала от примесей.

Пример 1:

1. Кристаллический ФТК массой 100 г крупностью -100+40 мкм 85% нагревают до температуры 220°С и затем охлаждают до 70°С, вновь нагревают до температуры 220°С и охлаждают до комнатной температуры.

2. 100 г ФТК, полученного, как описано в п.1, загружают при перемешивании в 600 мл 10% водного раствора аммиака, пульпу перемешивают в течение не менее 2 часов, отстаивают в течение 15-25 мин. Отстоявшийся раствор (около 78% взятого на обработку) снимают декантацией. В сгущенную пульпу добавляют 400 мл воды, перемешивают 0,5 часа, пульпу отстаивают 15-25 мин и раствор снимают декантацией (100% к объёму добавленной воды).

3. К сгущенной пульпе, полученной, как описано в п.2, добавляют 600 мл 5% соляной кислоты, пульпу перемешивают не менее 0,5 часа и отстаивают в течение 1,5-2 часов, раствор снимают декантацией (100% к объёму добавленной кислоты).

4. К сгущенной пульпе, полученной, как описано в п.3, добавляют 600 мл 3-4% раствора аммиака, пульпу перемешивают не менее 0,5 часа, отстаивают 15-25 мин. Раствор снимают декантацией.

5. К сгущенной пульпе, полученной, как описано в п.4, добавляют 600 мл 3% соляной кислоты, пульпу перемешивают 0,5 часа и фильтруют.

6. Отфильтрованный осадок, полученный, как описано в п.5, промывают на фильтре дважды по 50 мл воды и сушат при температуре 120°С. Содержание в осадке фтора <0,1%, калия 0,009% в пересчете на Ta2O5. Содержание примесей показано в таблице 1.

ПРЕДЕЛЫ ПАРАМЕТРОВ, ОБОСНОВАНИЕ.

1. Крупность ФТК - 100+40 мкм более 85%. С понижением доли указанной фракции ухудшается отстой осадка пентоксида тантала. С укрупнением ФТК - неполное его разложение.

2. Температурные интервалы нагревания и охлаждения ФТК объясняются началом и окончанием прямого и обратного полиморфного превращения. За этими точками температура не имеет значения.

3. Объемы реагентов, их концентрация при обработке ФТК найдены экспериментально. При этом повышение концентрации реагента и его объема степени разложения ФТК на данной стадии не увеличивают, снижение их ведет к снижению степени разложения.

ЛИТЕРАТУРА:

1. А.Н.Зеликман, Г.А.Меерсон "Металлургия редких металлов". - "Металлургия"; 1973, стр.203.

2. П.С.Киндяков, К.М.Рубайлова "Переработка танталового концентрата по кремнефторидному методу". Сборник научных трудов Гиредмета, т.1 - "Металлургиздат"; 1959, стр.672-673.

Способ получения пентоксида тантала, включающий обработку фтортанталата калия последовательно раствором аммиака и соляной кислоты, отличающийся тем, что для полного разложения фтортанталата калия с образованием гранулированного осадка, повышения чистоты пентоксида тантала, снижения требований по чистоте к исходному материалу и реагентам, снижения коррозионного воздействия на оборудование, фтортанталат калия предварительно нагревают в интервале 220÷250°С 1÷3 раза с промежуточным охлаждением до 70÷80°С до получения крупности -100+40 мкм более 85%, аммиачную обработку проводят при комнатной температуре, а циклы аммиачной и солянокислой обработок выполняют 2÷4 раза.



 

Похожие патенты:

Изобретение относится к области получения пентахлоридов ниобия и/или тантала из их оксидов и/или оксихлоридов. .
Изобретение относится к химическому соединению, имеющему структуру сверхпроводника. .
Изобретение относится к области металлургии редких и рассеянных элементов, а именно к экстракционному разделению тантала и ниобия. .
Изобретение относится к получению метаметаллатов (V) щелочных металлов типа АВО3, которые могут быть использованы для производства лазерных, электрооптических, сегнетоэлектрических материалов и специальной керамики.
Изобретение относится к химии оксоалкоксокомплексов металлов, перспективных в качестве исходных соединений для получения оксидных и металлических материалов. .
Изобретение относится к гидрометаллургии и может быть использовано при переработке отходов производства монокристаллов соединений тугоплавких металлов с щелочными металлами, в частности метатанталата и метаниобата лития, с получением высокочистых соединений тугоплавких металлов и лития, пригодных для повторного выращивания монокристаллов.
Изобретение относится к синтезу танталатов редкоземельных металлов, скандия или иттрия состава МТаO4 или М3TaO7, где М - редкоземельные металлы, скандий или иттрий. .
Изобретение относится к получению неорганических соединений, в частности к способу получения сложных оксидов щелочного металла и металла VB группы Периодической системы элементов Д.И.

Изобретение относится к выделению ниобия из концентрированных растворов, содержащих ниобий, тантал и титан. .

Изобретение относится к новым соединениям тантала и ниобия и способам их получения. .

Изобретение относится к способам получения метаметаллатов (V) щелочных металлов, которые могут быть использованы для производства лазерных, электрооптических, сегнетоэлектрических материалов и специальной керамики
Изобретение относится к области химических технологий, в частности к новому способу получения пентахлорида тантала, и может быть использовано для извлечения тантала в виде его пентахлорида из танталсодержащего сырья
Изобретение относится к области получения гептатанталата европия, классу сложных редкоземельных элементов и может быть использовано для изготовления материалов квантовой электроники
Изобретение относится к синтезу неорганических соединений, а именно к способу получения гидроксида тантала, и может быть использовано для изготовления материалов компьютерной, электронной и оптоэлектронной техники
Изобретение относится к получению материалов для производства сегнетоэлектрической керамики, используемой в электронной технике

Изобретение относится к получению порошка оксида вентильного металла и может быть использовано для получения порошков вентильного металла или недооксидов вентильного металла с помощью восстановления
Изобретение относится к области получения люминесцентного порошка политанталата тербия состава Tb2O3 ·nTa2O5 (n=7-9) и может быть использовано для изготовления материалов квантовой электроники
Изобретение относится к области получения оксидного порошка состава Pb(Mg1/3Ta2/3O3 ) со структурой типа перовскита и может быть использовано в изготовлении материалов для пьезотехники
Изобретение относится к новым химическим соединениям и может быть использовано в медицине, в частности к рентгенологии в качестве рентгеноконтрастного агента при рентгенологических исследованиях различных органов
Изобретение относится к области химической технологии, а именно к области получения соединений электролитическим способом, конкретно к способам получения интеркаляционных соединений, содержащих чередующиеся монослои дихалькогенида металла и органического вещества
Наверх