Способ получения порошка бета-сиалона

Способ получения порошка β-сиалона путем карботермического восстановления каолина включает термообработку шихты в атмосфере азота при температуре 1710-1780°С в течение 5-25 мин. Шихта содержит углеродный компонент с размером частиц 20-500 нм. Средний размер частиц получаемого порошка β-сиалона может регулироваться посредством использования дисперсного углеродного компонента шихты с заданным размером частиц. Технический результат изобретения - создание более скоростного и простого в реализации способа получения порошка β-сиалона, позволяющего получать β-сиалон с заданным размером частиц. 1 з.п. ф-лы.

 

Изобретение относится к получению сиалоновых материалов и композиций, применяемых в различных областях науки и техники.

Известен способ [1] получения высокопористого сиалонового материала с использованием в качестве исходной шихты глинистого и углеродного компонентов при следующем соотношении компонентов в смеси, мас.%: глинистый компонент - 76-82, углеродный компонент - 18-24. При этом в качестве глинистого компонента берут каолин, в качестве углеродного - графит. Способ включает формование брикета методом прессования смеси при давлении 25-100 МПа и последующий его отжиг в атмосфере азота при 1400-1450°С в течение 3-4 ч.

Недостатком известного способа является большое (более 3 часов) время высокотемпературного обжига.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому техническому решению является способ [2] получения β-сиалона (Si6-zAlzN8-zOz, z=2,7-4,0) из минерального сырья, в частности из муллитообразующей породы (каолина), путем его карботермического восстановления при температуре 1300-1500°С в течение 0,5-6 часов в атмосфере азота. Способ предполагает предварительную термообработку исходной муллитообразующей породы в присутствии щелочи для удаления аморфного оксида кремния и получения активной к карботермическому азотированию шихты с удельной поверхностью алюмосиликатного компонента более 50 м2/г.

Недостатками известного способа являются (1) сложность и длительность технологического процесса, обусловленные наличием сложных операций предварительной подготовки муллитообразующей породы, а также (2) большой разброс в размерах частиц получаемого порошка β-сиалона.

Предлагаемым изобретением решается задача создания более скоростного и простого в реализации способа получения порошка β-сиалона, позволяющего, кроме того, получать порошок β-сиалон с заданным размером частиц.

Поставленная задача решается тем, что при получении порошка β-сиалона путем карботермического восстановления каолина в атмосфере азота используют шихту, содержащую углеродный компонент с размером частиц 20-500 нм, а ее термообработку проводят при температуре 1710-1780°С в течение 5-25 мин.

При этом может быть использована шихта с заданным размером частиц углеродного компонента, определяемым исходя из соотношения

Dc=DSIALON/1,93,

где Dc - средний размер частиц вводимого в шихту углеродного компонента,

DSIALON - средний размер частиц получаемого порошка β-сиалона.

Техническим результатом предлагаемого изобретения является обеспечение преобразования твердого алюмосиликатного компонента шихты в газообразное состояние и соответственно ускорение его реакции с твердым углеродным компонентом и газообразным азотом.

Технический результат достигается выбором температурного и временного режима проведения карботермического восстановления каолина в атмосфере азота. При температуре 1710-1780°С продукт термического разложения каолина (алюмосиликатного компонента) восстанавливается до газообразных оксидов Al2O и SiO, после чего он быстро (в течение нескольких минут) вместе с азотом взаимодействует с частицами углеродного компонента таким образом, что частица углеродного компонента трансформируется в частицу β-сиалона. Перевод алюмосиликатных компонентов в газовую фазу позволяет увеличить скорость проведения реакции образования β-сиалона. Участие углеродного компонента в качестве субстрата при образовании β-сиалона при взаимодействии с газообразными азотом, Al2O и SiO позволяет регулировать размер частиц получаемого β-сиалона посредством использования дисперсного углеродного компонента с заданным размером частиц.

Предлагаемый способ заключается в следующем. Исходным компонентом для получения β-сиалона служит каолин (Al2O3·2SiO2·2H2O) и углеродный компонент, в качестве которого может быть использована печная сажа. Шихту готовят одним из известных способов. Например, каолин (70-80 мас.%) и печную сажу (20-30 мас.%) смешивают в присутствии воды при влажности 60-70% в лопастной мешалке в течение 15-40 мин. Полученную суспензию сушат при температуре 110-120°С. Высушенную смесь (шихту) в графитовом тигле помещают в проточную печь с графитовым нагревателем. Через рабочий объем печи организуют ток азота с расходом 1-5 л/мин. Печь разогревают до температуры 1710-1780°С со скоростью 50-100°/мин и выдерживают при этой температуре в течение 5-25 мин. Охлаждение проводят вместе с печью до комнатной температуры. Продукт извлекают из графитового тигля, тщательно перетирают и проводят аттестацию продукта с использованием рентгенофазового, электронно-микроскопического и химического анализов.

Предлагаемый способ с получением частиц β-сиалона с определенным размером иллюстрируется следующими примерами.

Пример 1. Берут 16 г (80 мас.%) просяновского каолина и 4 г (20 мас.%) углерода в виде сажи ПМ-75 (средний размер частиц углерода - 40 нм). Компоненты тщательно перемешивают в присутствии воды (влажность 65%), сушат до постоянной массы и в графитовом тигле помещают в проточную печь с графитовым нагревателем. Расход азота через рабочий объем печи - 1 л/мин. Разогрев печи осуществляют со скоростью 50°С/мин. до 1710°С. Тигель со смесью выдерживают при этой температуре 5 мин в токе азота. Тигель охлаждают до комнатной температуры вместе с печью. По данным химического и рентгенофазового анализов полученный продукт является β-сиалоном общей формулы Si3Al3O3N5, примеси - SiC, AlN. Выход - 87%. По данным растровой электронной микроскопии средний размер частиц полученного порошка - 110 нм.

Пример 2. Берут 35 г (70 мас.%) кыштымского каолина и 15 г (30 мас.%) углерода в виде сажи ПМ-100 (средний размер частиц углерода - 30 нм). Компоненты тщательно перемешивают в присутствии воды (влажность 70%), сушат до постоянной массы и в графитовом тигле помещают в проточную печь с графитовым нагревателем. Расход азота через рабочий объем печи - 5 л/мин. Разогрев печи осуществляют со скоростью 70°С/мин до 1780°С. Тигель со смесью выдерживают при этой температуре 25 мин в токе азота. Тигель охлаждают до комнатной температуры вместе с печью. По данным химического и рентгенофазового анализов полученный продукт является β-сиалоном общей формулы Si3Al3О3N5, примеси - SiC, AlN. Выход - 86%. По данным растровой электронной микроскопии средний размер частиц полученного порошка - 76 нм.

Пример 3. Берут 30 г (75 мас.%) глуховецкого каолина и 11,25 г (25 мас.%) углерода в виде сажи ПМ-150 (средний размер частиц углерода - 20 нм). Компоненты тщательно перемешивают в присутствии воды (влажность 60%), сушат до постоянной массы и в графитовом тигле помещают в проточную печь с графитовым нагревателем. Расход азота через рабочий объем печи - 3 л/мин. Разогрев печи осуществляют со скоростью 100°С/мин до 1750°С. Тигель со смесью выдерживают при этой температуре 15 мин в токе азота. Тигель охлаждают до комнатной температуры вместе с печью. По данным химического и рентгенофазового анализов полученный продукт является β-сиалоном общей формулы Si3Al3О3N5, примеси - SiC, AlN. Выход - 85%. По данным растровой электронной микроскопии средний размер частиц полученного порошка - 65 нм.

Выбор параметров осуществления заявляемого способа обусловлен следующим.

При содержании углерода в исходной шихте менее 20 мас.% получаемый материал в качестве примеси содержит корунд. При содержании углерода в исходной шихте более 30 мас.% получаемый материал содержит более 18 мас.% SiC.

При уменьшении времени смешивания каолина и углерода менее 15 мин не происходит необходимое для достижения технического результата пространственное сопряжение частиц каолина и углеродного компонента в смеси.

При расходе азота, пропускаемого через рабочую зону печи, менее 1 л/мин его количества недостаточно для протекания реакции карботермического азотирования.

При разогреве печи до температуры термообработки со скоростью менее 50°/мин реакционная смесь длительное время находится при температуре <1500°С, при которой происходят процессы муллитизации каолина, что препятствует достижению технического результата и приводит к уменьшению содержания β-сиалона в продукте синтеза.

Недостаточное время (менее 5 мин) термообработки реакционной смеси при температуре синтеза приводит к неполному протеканию химических реакций, и, как следствие, к загрязнению продукта углеродом. Термообработка свыше 25 мин приводит к спеканию (увеличению размеров частиц) продукта реакции и, следовательно, препятствует регулированию размера частиц получаемого β-сиалона.

Уменьшение размера частиц углерода менее 20 нм приводит к тому, что в результате синтеза получается порошок β-сиалона с размером частиц менее верхней границы области критических размеров β-сиалона (D+SIALON=40-60 нм), что обуславливает его высокую активность к спеканию и, следовательно, препятствует регулированию размера частиц получаемого β-сиалона. Увеличение размера частиц углерода более 500 нм уменьшению скорости образования β-сиалона.

Таким образом, предлагаемый способ получения β-сиалона позволяет не только уменьшить время синтеза β-сиалона, но и регулировать размер частиц порошка β-сиалона простым технологическим способом, исключающим ряд дополнительных операций.

Использованные источники информации:

1. Пат. RU 2191759, Анциферов В.Н., Гилев В.Г. Способ получения пористого материала, МПК С 04 В 35/599, 1999.10.26.

2. Pat. EP 0289440, Moya Corral Jose S., De Aza Pendas Salvador, Morales Poyato Francisco, Valle Fuentes Francisco J., Osendi Miranda Isabel, Martinez Caceres Rafael, Corral Martinez Ma Paz, A method for the production of beta'-sialon based ceramic powders, IPC C 01 B 21/082, C 04 B 35/58, 1988.11.02.

1. Способ получения порошка β-сиалона путем карботермического восстановления каолина в атмосфере азота, отличающийся тем, что шихта содержит углеродный компонент с размером частиц 20-500 нм, а ее термообработку проводят при температуре 1710-1780°С в течение 5-25 мин.

2. Способ по п.1, отличающийся тем, что используют шихту с заданным размером частиц углеродного компонента, определяемым, исходя из соотношения

DC=DSIALON/1,93, где

DC - средний размер частиц вводимого в шихту углеродного компонента;

DSIALON - средний размер частиц получаемого порошка β-сиалона.



 

Похожие патенты:
Изобретение относится к промышленности строительных материалов, а именно, к составам легкобетонных смесей для изготовления ограждающих сборных и монолитных изделий и конструкций.

Изобретение относится к области строительных материалов и может быть использовано для изготовления изделий в промышленном и гражданском строительстве. .

Изобретение относится к области строительных материалов и может быть использовано для изготовления изделий в промышленном и гражданском строительстве. .
Изобретение относится к области получения стойких дисперсных систем пен, которые могут быть использованы в технологии изготовления поризованных изделий на основе глин, цемента, гипса.

Пенобетон // 2245866
Изобретение относится к промышленности строительных материалов, а именно суперлегких пенобетонов с применением дисперсного армирования волокном. .

Изобретение относится к составам для приготовления строительных растворов ячеистой структуры с пониженной средней плотностью. .

Изобретение относится к области строительных материалов и изделий, может быть использовано в производствах пенобетона, сборных, архитектурно-строительных, декоративных изделий, деталей и монолитных конструкций на его основе.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления ячеисто-бетонных изделий, стеновых блоков, стеновых панелей, комплексных плит покрытий.

Изобретение относится к строительным материалам и может быть использовано аналогично пенобетону. .

Изобретение относится к промышленности строительных материалов, а именно к производству легких огнеупорных бетонов. .
Изобретение относится к области строительства, в частности к производству газобетона, применяемого в производстве конструкционно-изоляционных изделий для возведения жилых, общественных и производственных зданий до 3-х этажей без внутреннего каркаса.

Изобретение относится к промышленности строительных материалов, а именно к составам для производства ячеистого бетона неавтоклавного монолитного растущего, и может использоваться при производстве стеновых панелей и блоков гражданских и промышленных зданий, в монолитном строительстве, а также при восстановлении и реконструкции зданий и сооружений.

Изобретение относится к строительной промышленности, а именно к технологиям для производства ячеистого бетона неавтоклавного монолитного растущего, и может использоваться при производстве стеновых панелей и блоков гражданских и промышленных зданий, в монолитном строительстве, а также при восстановлении и реконструкции зданий и сооружений.

Изобретение относится к производству строительных материалов, а именно легких ячеисто-бетонных изделий, в том числе автоклавного твердения, а более конкретно мелких стеновых блоков, используемых на предприятиях строительной индустрии для кладки на растворе наружных стен и перегородок жилых, общественных, сельскохозяйственных и вспомогательных производственных зданий и сооружений.

Изобретение относится к промышленности строительных материалов и главным образом к получению жаростойких пенокерамических материалов. .

Изобретение относится к технологии производства строительных материалов и может быть использовано для изготовления теплоизоляционных и конструкционно-теплоизоляционных бетонов автоклавного твердения различного назначения.

Изобретение относится к производству строительных материалов, в частности к получению поризованного (ячеистого) бетона, и рекомендуется к применению в производстве эффективных стеновых материалов.

Изобретение относится к составам неавтоклавных ячеистых бетонов, используемых для изготовления строительных конструкций, в том числе ограждающих строительных конструкций, предназначенных для тепловой изоляции нагретых поверхностей промышленного теплового и электрического оборудования, например печей, котлов, пропарочных камер, автоклавов.
Наверх