Сырьевая смесь и способ изготовления керамических материалов высокопористой структуры

Предлагаемое изобретение относится к производству керамических материалов ячеистой структуры и может быть использовано для изготовления строительных конструкций. Технический результат - повышение прочности, снижение себестоимости материала, расширение сырьевой базы. Сырьевая смесь для приготовления керамических материалов высокопористой ячеистой структуры включает компоненты в следующем соотношении, мас. %: микрокремнезем 8,06-8,31, зола-унос 56,30-58,20, алюминиевая пудра 0,40-0,42, моющее средство «Тайга» 0,40-0,42, карбоксиметилцеллюлоза натрия 0,81-0,98, хлористый кальций 0,17-0,19, вода 32,20-33,54. Способ изготовления керамических материалов высокопористой структуры из сырьевой смеси включает приготовление смеси, формование, вибровспучивание, сушку при температуре 100°С и обжиг при температуре 900°С. 2 н.п. ф-лы, 2 табл.

 

Предлагаемое изобретение относится к производству керамических материалов ячеистой структуры и может быть использовано для изготовления легковесных изделий строительных конструкций.

Известны сырьевые смеси, включающие диатомит, опилки и т.п. Наиболее близким аналогом является сырьевая смесь, включающая золу-унос, кремнеземистый компонент и выгорающие добавки (порообразователи) [заявка ФРГ №3207623, опубл. 29.09.1983, кл. С 04 В 21/00].

Недостатком указанной смеси является необходимость использования локально залегающего или дорогостоящего (цеолит, диатомит, полистирол и др.) сырья, высокая средняя плотность материала.

Технический результат - снижение средней плотности материала, расширение сырьевой базы.

Технический результат достигается тем, что сырьевая смесь для приготовления керамических материалов высокопористой структуры, включающая золу-унос, кремнеземистый компонент, порообразователь и воду, дополнительно содержит хлористый кальций, в качестве кремнеземистого компонента - микрокремнезем с удельной поверхностью более 25 тыс. см2/г и содержанием аморфного SiO2 90-95%, в качестве порообразователя - алюминиевую пудру, моющее средство "Тайга" и карбоксиметилцеллюлозу натрия при следующем соотношении компонентов, мас.%:

Зола-унос 56,30-58,20
Микрокремнезем 8,06-8,31
Алюминиевая пудра 0,40-0,42
Моющее средство "Тайга" 0,40-0,42
Карбоксиметилцеллюлоза натрия 0,81-0,98
Хлористый кальций 0,17-0,19
Вода 32,20-33,54

Микрокремнезем производства кристаллического кремния является дисперсным отходом, характеризующимся малым размером частиц (0,1...3 мкм) и, как следствие, высокой удельной поверхностью (более 250 тыс. см2/г). Микрокремнезем осаждается в электрофильтрах газоочистки плавильных печей производства кристаллического кремния. Химический состав микрокремнезема (в мас.%): SiO2-90...95; Al2О3 - до 0,8; Fe2О3 - до 0,8; СаО-1,6; MgO - до 1,2; SiC - до 5; Собщ - до 9; K+ - до 0,25; Na+ - до 0,06; п.п.п. - до 20.

Золы-уносы от сжигания бурых углей Канско-Ачинского бассейна (Ирша-Бородинское, Назаровское, Березовское месторождения) являются высококальциевыми и содержат, мас.%: SiO2 21...55; Al2O3 4...11; Fe2О3 6...16; СаО 20...46; MgO 3...6; К2О 0,2...1,5; Na2О 0,2...0,6; SO3 0,9...9; СаОсв 3...13; горючих примесей - не более 2...2.5.

Моющее средства "Тайга" (МС "Тайга") является побочным продуктом сульфатной обработки древесины, производимым "Братсккомплексхолдингом" г. Братска [ТУ 13-4302007-032-92].

Моющее средство получают путем переработки и очистки сырого сульфатного мыла - промежуточного продукта сульфатно-целлюлозного производства.

Химический состав моющего средства "Тайга", мас.%:

Кислоты жирные талловые омыленные 98,6
Формалин (консервант) 0,2
Натриевая соль карбоксиметилцеллюлозы или
метилцеллюлозы (антиресорбент) 0,5
Отдушка для мыла и моющих средств 0,7

Введение моющего средства "Тайга" способствует вовлечению воздуха в сырьевую смесь за счет поверхностно-активных свойств добавки и интенсифицирует газовыделение при обжиге вследствие выгорания органики.

Высокая общая и развитая закрытая пористость материала обуславливает низкую теплопроводность изделий.

Наиболее близок к предлагаемому способу по технической сущности и достигаемому эффекту способ [заявка ФРГ №3207623, опубл. 29.09.1983, кл. С 04 В 21/00], включающий приготовление смеси, формование, сушку и обжиг материала.

Недостатками указанного способа являются высокая теплопроводность материала.

Указанный технический результат достигается тем, что в способе приготовления керамических материалов высокопористой структуры, включающем приготовление смеси, формование, сушку при 100°С и обжиг при 900°С, приготавливают смесь по п.1 и при формовании дополнительно осуществляют вибровспучивание.

Пример:

Процесс приготовления сырьевой смеси включает следующие операции. Сухие компоненты дозируют, тщательно перемешивают. В воду затворения вводят хлористый кальций и предварительно замоченную в воде карбоксиметилцеллюлозу натрия. Смесь перемешивают в быстроходном смесителе в течение 4-5 минут. В полученную массу вводят суспензию алюминиевой пудры в водном растворе моющего средства "Тайга", после чего смесь перемешивается в течение 1 минуты. Смесь укладывают в хорошо смазанную и герметично собранную форму, которую устанавливают на вибростол и подвергают вибрации, в процессе которой происходит тиксотропное разжижение смеси и взаимодействие алюминиевой пудры с Са(ОН)2, находящимся в золе-уносы. Образцы выдерживаются в формах в течение суток, затем срезается "горбушка", распалубливаются и высушиваются до постоянной массы при температуре 100°С, обжиг производится при температуре 900°С.

Состав и физико-механические показатели готовых изделий представлены в табл.1 и 2.

Таблица 1.
КомпонентыКоличество, мас.%
123
Зола-унос58,2056,3057,9
Микрокремнезем8,318,218,06
Алюминиевая пудра0,400,410,42
Моющее средство "Тайга"0,400,380,42
Карбоксиметилцеллюлоза натрия0,890,980,81
Хлористый кальций0,170,180,19
Вода31,6333,5432,20

Таблица 2.
СоставТемпература обжига, °ССредняя плотность, кг/м3Теплопроводность в сухом состоянии, Вт/(м °С)
Прототип700...1000900...15000,353...0,670
19004250,088
29004180,064
39004090,086
Примечание. Теплопроводность прототипа рассчитана по эмпирической формуле В.Н.Некрасова

где λ - теплопроводность, (Вт/м °С); ρm - средняя плотность материала, т/м3.

1. Сырьевая смесь для приготовления керамических материалов высокопористой структуры, включающая золу-унос, кремнеземистый компонент, порообразователь и воду, отличающаяся тем, что она дополнительно содержит хлористый кальций, в качестве кремнеземистого компонента - микрокремнезем с удельной поверхностью более 25 тыс. см2/г и содержанием аморфного SiO2 90-95 %, в качестве поробразователя - алюминиевую пудру, моющее средство «Тайга» и карбоксиметилцеллюлозу натрия при следующем соотношении компонентов, мас. %:

Зола-унос 56,30-58,20
Микрокремнезем8,06-8,31
Алюминиевая пудра 0,40-0,42
Моющее средство "Тайга" 0,40-0,42
Карбоксиметилцеллюлоза натрия 0,81-0,98
Хлористый кальций 0,17-0,19
Вода 32,20-33,54

2. Способ изготовления керамических материалов высокопористой структуры из сырьевой смеси, включающий приготовление смеси, формование, сушку при температуре 100°С и обжиг при температуре 900°С, отличающийся тем, что приготавливают смесь по п.1 и после формования дополнительно осуществляют вибровспучивание.



 

Похожие патенты:
Изобретение относится к получению сиалоновых материалов и композиций, применяемых в различных областях науки и техники. .

Изобретение относится к промышленности строительных материалов, а именно к производству легких огнеупорных бетонов. .
Изобретение относится к области строительства, в частности к производству газобетона, применяемого в производстве конструкционно-изоляционных изделий для возведения жилых, общественных и производственных зданий до 3-х этажей без внутреннего каркаса.

Изобретение относится к промышленности строительных материалов, а именно к составам для производства ячеистого бетона неавтоклавного монолитного растущего, и может использоваться при производстве стеновых панелей и блоков гражданских и промышленных зданий, в монолитном строительстве, а также при восстановлении и реконструкции зданий и сооружений.

Изобретение относится к строительной промышленности, а именно к технологиям для производства ячеистого бетона неавтоклавного монолитного растущего, и может использоваться при производстве стеновых панелей и блоков гражданских и промышленных зданий, в монолитном строительстве, а также при восстановлении и реконструкции зданий и сооружений.

Изобретение относится к производству строительных материалов, а именно легких ячеисто-бетонных изделий, в том числе автоклавного твердения, а более конкретно мелких стеновых блоков, используемых на предприятиях строительной индустрии для кладки на растворе наружных стен и перегородок жилых, общественных, сельскохозяйственных и вспомогательных производственных зданий и сооружений.

Изобретение относится к промышленности строительных материалов и главным образом к получению жаростойких пенокерамических материалов. .

Изобретение относится к технологии производства строительных материалов и может быть использовано для изготовления теплоизоляционных и конструкционно-теплоизоляционных бетонов автоклавного твердения различного назначения.

Изобретение относится к производству строительных материалов, в частности к получению поризованного (ячеистого) бетона, и рекомендуется к применению в производстве эффективных стеновых материалов.

Изобретение относится к составам для приготовления керамических материалов ячеистой структуры, используемых для изготовления строительных конструкций. .
Изобретение относится к производству стеновых керамических изделий и может быть использовано для изготовления строительных материалов. .
Изобретение относится к производству строительных материалов и может быть использовано для изготовления лицевых керамических изделий. .

Изобретение относится к сцинтилляционным материалам и может быть использовано в ядерной физике, медицине и нефтяной промышленности для регистрации и измерения рентгеновского, гамма- и альфа-излучений; неразрушающего контроля структуры твердых тел; трехмерной позитрон-электронной и рентгеновской компьютерной томографии и флюорографии.

Изобретение относится к производству керамических материалов, в частности к способу изготовления керамических фильтрующих элементов для селективного разделения компонентов фильтруемых сред.

Изобретение относится к области технологии формованных керамических изделий и может быть использовано для изготовления керамических расклинивателей нефтяных и газовых скважин.

Изобретение относится к огнеупорной промышленности, а именно для изготовления огнеупорных блоков, монолитных футеровок нагревательных и термических печей, ремонта футеровок.

Изобретение относится к производству изделий строительной керамики, например кирпича или камней, и может быть использовано для изготовления строительных материалов.

Изобретение относится к производству строительной керамики и может быть использовано для изготовления строительных материалов. .
Изобретение относится к производству легких пористых углеродсодержащих огнеупорных материалов
Наверх