Способ определения микробиологического загрязнения водных сред и устройство для его осуществления

Группа изобретений относится к микробиологии и экологии и может быть использована для мониторинга водных бассейнов и грунтовых вод, а также бактериологического контроля водных растворов и суспензии в медицине, пищевой и других отраслях промышленности. Способ количественного определения микробиологического загрязнения воды и водных сред заключается в отборе проб исследуемой среды, ее пропускании через бактерицид формулы R4NIn((n-1)/2)Н2O, доведении рН пробы до значений 5-6 и определении микробиологического загрязнения среды по концентрации йода, выделившегося после взаимодействия пробы с бактерицидом. Микробиологическое загрязнение среды может быть определено как по концентрации йода в восстановленной форме J-, так и в окисленной форме J2. Устройство для осуществления способа содержит бактерицидный фильтр, соединенный с реакционной камерой, на выходе которой установлен регистрирующий прибор. Достигается повышение чувствительности и достоверности количественного определения микробиологического загрязнения воды и водных сред при сокращении времени определения. 2 н. и 3 з.п. ф-лы, 4 табл., 1 ил.

 

Область применения

Изобретение относится к микробиологии и экологии, а именно к области определения микробиологического загрязнения водных сред, и может быть использовано для мониторинга поверхностных и подземных вод, а также бактериологического контроля водных растворов и суспензий в медицине, пищевой и других отраслях промышленности.

Предшествующий уровень техники

Оценка количественного присутствия бактерий в воде и жидких водных средах, а также степень заражения являются важнейшим требованием экологической безопасности. Особенно важен контроль бактериального заражения водных сред в условиях эпидемиологических ситуаций, когда такой контроль должен осуществляться максимально быстро.

Общепринятым в настоящее время является метод контрольного рассева с последующим подсчетом образовавшихся колоний.

В качестве регистрирующего прибора для прямого количественного подсчета микробных тел в воде и водных средах используются оптические приборы, например микроскоп.

Этот метод достаточно точен, однако требует значительного времени - от 48 до 72 часов.

Существуют и другие методы контроля степени бактериального заражения, которые можно условно разделить на две большие группы.

1) Прямые методы, заключающиеся в непосредственном подсчете микробных клеток. Из прямых методов известны, в частности, такие, как прямой подсчет микробных клеток, имеющих собственную окраску (см. заявку на изобретение РФ №2000122909, МПК C 12 Q 1/04).

2) Косвенные методы, использующие те или иные специфические свойства бактерий, например электропроводность (см. заявку на изобретение РФ №2001132198, МПК C 12 Q 1/06), светорассеяние (см. патент на изобретение GB №2386946, МПК C 12 Q 1/04), способность к флюоресценции (см. патент на изобретение СА №2264272, МПК C 12 Q 1/04).

Косвенные методы более разнообразны. Так, например, известны методы, использующие цветоиндикаторы, окрашивающие продукты жизнедеятельности бактерий (см. Международная заявка № WO 0218625, МПК C 12 Q 1/04; патент США № US 6632632, МПК C 12 Q 1/04; патент США № US 2003203422, МПК C 12 Q 1/04) или использующие цветные реакции при взаимодействии бактерий с антигенами и антителами (см. Европейский патент № ЕР 1356080, МПК C 12 Q 1/04).

Для косвенного определения микробиологических загрязнений в качестве регистрирующих приборов используются приборы для измерения светорассеяния и флюоресценции.

В последнее время получили распространение так называемые "молекулярные" методы, заключающиеся в приготовлении препаратов бактерий с мечеными нуклеокислотами, которые могут быть обнаружены физическими методами (см. патент США № US 6630302, МПК C 12 Q 1/68).

Эти "молекулярные" методы достаточно точны в оценке бактериального заражения, однако даже самые быстрые из них (если не включать в рассмотрение предварительную подготовку препаратов) требуют не менее 4-х часов.

Кроме прочего, все вышеперечисленные методы требуют соблюдения стерильных условий, что труднодостижимо в полевых условиях.

Наиболее близким к предлагаемому устройству по способу регистрации микробиологических загрязнений является детектор подвижных микроорганизмов, предназначенный для контроля качества воды с использованием оптического метода, содержащий кювету для исследуемой жидкости в виде отрезка полого оптического волновода, источник оптического излучения и два или более фотоприемника (см. патент на изобретение РФ №2143487, МПК С 12 М 1/34).

Раскрытие изобретения

Задачей предлагаемого изобретения является повышение чувствительности и достоверности способа количественного определения микробиологического загрязнения воды и водных сред при сокращении времени определения.

Для решения задачи, в соответствии с предложенным способом количественного определения микробиологического загрязнения воды и водных сред, проводят отбор проб исследуемой среды, которые пропускают через бактерицид формулы R4NIn((n-1)/2) H2O, доводят рН пробы до значений 5-6 и определяют микробиологическое загрязнение среды по концентрации иода, выделившегося после взаимодействия пробы с бактерицидом.

Указанный бактерицид известен как препарат для создания эффективных обеззараживающих средств для воды и водных растворов (патент РФ №2213063, 27.09.2003). В нем n - целое число от 3 до 9, R - органический радикал, N - азот, I - иод.

Микробиологическое загрязнение среды может быть определено как по концентрации йода в восстановленной форме J-, так и в окисленной форме J2.

На решение поставленной задачи направлено решение, касающееся устройства для осуществления способа, содержащее регистрирующий прибор, включающий источник оптического излучения, кювету для исследуемой среды и фотоприемник, бактерицидный фильтр с бактерицидом формулы R4NIn((n-1)/2)Н2О и реакционную камеру, соединенные между собой. При этом регистрирующий прибор установлен на выходе реакционной камеры.

Реакционная камера выполнена из коррозионно-стойкого материала и имеет горловину для ввода реагентов, узел перемешивания.

Изобретение поясняется чертежом, на котором представлена блок-схема устройства, с помощью которого может быть реализован заявляемый способ.

Позициями на чертеже обозначены: 1 - бактерицидный фильтр, 2 - реакционная камера, 3 - горловина для ввода реагентов, 4 - узел перемешивания, 5 - выходной патрубок с вентилем, 6 - регистрирующий прибор.

Предлагаемый способ основан на использовании йодсодержащего бактерицида, имеющего полезное свойство выделять положительный йод-радикал "по сигналу" - при появлении в воде живых микроорганизмов, несущих избыточный электростатический заряд. Выделяющийся бактерицидом положительный йод-радикал (I*+) взаимодействует только с электростатическим зарядом микроорганизмов, а не с функциональными группами их оболочек. Это количественное взаимодействие, положенное в основу заявляемого способа, использовано для счета микробиологических загрязнений. Данное взаимодействие поясняется следующей формулой:

где Q*- - микробиологический объект, несущий отрицательный электростатический заряд;

R4NIn((n-1)/2)Н2О - йодсодержащий бактерицид;

(Q*I*)0 - йод-радикал, присоединенный к микробиологическому объекту;

I- - йод в восстановленной форме.

Степень микробиологического загрязнения, например бактериального заражения, определяется по количеству образовавшихся йодид-ионов (I-) любым из известных способов: весовым, титрометрическим, колориметрическим и т.д.

Наиболее удобным является количественное колориметрическое определение йода, образующегося после перевода йодид-ионов в молекулярный йод в результате окислительной реакции в кислой среде (рН 5-6), например, по формуле

Результаты экспериментов показали, что концентрация йода пропорциональна степени микробиологического загрязнения, т.е. количеству микробных тел в единице объема.

Устройство для количественного определения микробиологического загрязнения воды и водных сред состоит из бактерицидного фильтра 1, соединенного с реакционной камерой 2, имеющей горловину 3 для ввода реагентов. Для ускорения реакции камера может быть снабжена узлом перемешивания 4. Камера имеет выходной патрубок с вентилем 5. Устройство содержит также регистрирующий прибор 6. В качестве регистрирующего прибора может быть использован фотоэлектроколориметр.

Бактерицидный фильтр 1 представляет собой емкость, в которой в качестве засыпки использован йодсодержащий бактерицид формулы R4NIn((n-1)/2)Н2О. Реакционная камера 2 представляет собой корпус из стойкого к коррозии материала, например полипропилена.

Лучший вариант осуществления изобретения

Определение микробиологического загрязнения осуществляют пропуская пробу воды через бактерицидный фильтр 1, в котором йодсодержащий бактерицид количественно взаимодействует с микробиологическими объектами. Выделившиеся в раствор йодид-ионы попадают в реакционную камеру 1, где в раствор для создания среды с рН 5-6 добавляют, например, фосфатно-лимонно-кислотный буфер. Затем в образовавшийся буферный раствор добавляют окислитель, например надсерно-кислый аммоний, в результате чего происходит реакция окисления йодид-ионов до йода с изменением окраски исходного раствора. Реакция может быть ускорена перемешиванием.

При использовании колориметрического способа концентрация йода в водном растворе может быть легко пересчитана в единицы бактериального заражения (количество микробных тел в см3, м.т./см3). В качестве раствора сравнения использовалась дистиллированная или деионизированная вода.

Пример 1:

Готовили пробы стерильной воды объемом 50 см3, затем загрязняли ее бактериями E.coli в концентрациях 5000 и 10000 м.т./см3 и последовательно пропускали через бактерицидный фильтр с насыпным объемом 100 см3.

Затем рН отфильтрованных растворов доводили добавлением 10 см фосфатно-лимонно-кислотного буферного раствора до значений 5-6, а концентрацию выделившегося из бактерицида йода, пропорциональную микробиологическому заражению воды (количеству микробных тел на единицу объема), определяли весовым методом путем осаждения 0,1 Н раствором AgNO3. Параллельно проводился контрольный опыт с пробой стерильной воды.

Результаты экспериментов представлены в таблице 1.

Таблица 1
Концентрация йода в восстановленной форме, г/дм3Степень микробиолоического загрязнения воды, м.т./см3
0,00000
0,00205000
0,003910000

Корреляция между концентрацией йода и микробиологическим загрязнением воды определяется следующим эмпирическим уравнением:

,

где - концентрация йода в восстановленной форме,

CJ2 - концентрация йода в окисленной форме (молекулярный йод),

Q - количество микробных тел в единице объема, м.т./см3.

Пример 2.

Готовили пробы стерильной воды объемом 50 см3, которые загрязняли бактериями Е.Coli в концентрациях 500, 1000, 5000 и 10000 м.т./см3 и последовательно подвергали операциям, аналогичным описанным в примере 1, до получения отфильтрованного раствора с рН 5-6, содержащего йод в восстановленной форме.

Затем I- переводился в окисленную форму I2 стехиоиметрическим окислением надсерно-кислым аммонием (NH4)2S2O8 по реакции (2).

Концентрация I2, пропорциональная степени микробиологического загрязнения воды, определялась колориметрически по калибровке, выраженной уравнением

Д=16CJ2,

где Д - оптическая плотность.

Результаты исследований представлены в таблицах 2 и 3

Таблица 2
Концентрация йода, г/дм3Степень микробиологического загрязнения воды, м.т./см3
0,00,0
0,0002500
0,00041000
0,001805000
0,0039110000
Таблица 3
Оптическая плотность, ДСтепень микробиологического загрязнения воды, м.т./см3
0,00000
0,0064500
0,01281000
0,06305000
0,126710000

В результате проведенных экспериментов (см. таблицу 3) выявлено, что зависимость микробиологического загрязнения от оптической плотности может быть выражена следующим эмпирическим уравнением:

Д=127 10-7Q

Пример 3.

Определение микробиологического загрязнения в пробе воды объемом 50 см3 из подземного источника глубиной 22 метра, расположенного на расстоянии 400 метров от реки Волга, проводили аналогично примеру 2.

Результаты приведены в таблице 4.

Таблица 4
Оптическая плотность, ДСтепень микробиологического загрязнения воды, м.т./см3
0,500037000

Промышленная применимость

Предлагаемый способ количественного определения микробиологического загрязнения водных сред очень быстр (до 30 мин), точен (до 400 м.т./см3) и не требует особой стерильности.

1. Способ определения микробиологического загрязнения водных сред, заключающийся в отборе проб исследуемой среды, ее пропускании через бактерицид формулы R4NIn((n-1)/2)Н2О, доведении рН пробы до значений 5-6 и определение микробиологического загрязнения среды по концентрации йода, выделившегося после взаимодействия пробы с бактерицидом.

2. Способ по п.1, отличающийся тем, что микробиологическое загрязнение среды определяют по концентрации йода в восстановленной форме J-.

3. Способ по п.1, отличающийся тем, что микробиологическое загрязнение среды определяют по концентрации йода в окисленной форме J2.

4. Устройство для осуществления способа, содержащее регистрирующий прибор, отличающееся тем, что он дополнительно содержит бактерицидный фильтр с бактерицидом формулы R4NIn((n-1)/2)Н2О и реакционную камеру, соединенные между собой, при этом регистрирующий прибор установлен на выходе реакционной камеры.

5. Устройство по п.4, отличающееся тем, что реакционная камера выполнена из коррозионно-стойкого материала и имеет горловину для ввода реагентов, узел перемешивания, выходной патрубок.



 

Похожие патенты:

Изобретение относится к исследованию и анализу воды и может быть использовано для определения состояния электрохимически активированной воды в разное время после активации.

Изобретение относится к биотехнологии, а именно к области охраны окружающей среды. .

Изобретение относится к аналитической химии и может быть использовано в качестве средства метрологического обеспечения методик выполнения измерений при определении содержания нефтепродуктов в водных средах.

Изобретение относится к биотехнологии и может быть использовано в природоохранной деятельности, для контроля качества природных и сточных вод. .

Изобретение относится к экологии. .

Изобретение относится к инженерной экологии и может быть использовано при мониторинге рек в качестве речной воды, в частности, с учетом загрязнения сточными водами в пределах городов и населенных пунктов.
Изобретение относится к химии, в частности к контролю качества воды, содержащей органические примеси, и может найти применение при количественной оценке свойств органических соединений в водных растворах.
Изобретение относится к исследованиям в области охраны окружающей среды и рационального природопользования, а именно к способам оценки загрязнения территорий пестицидами с помощью биотестирования.

Изобретение относится к органической химии и может найти применение при определении общей органической загрязненности поверхностных, подземных, питьевых и производственных вод, а также для определения суммарного количества летучих органических соединений в этих водах

Изобретение относится к области охраны окружающей среды и предназначено для использования на объектах уничтожения химического оружия и для оценки их влияния на экологическую обстановку в регионе

Изобретение относится к исследованию накипеобразования в приближенных к производственным условиях при контролируемых значениях таких параметров как давление и концентрации солей в рабочей жидкости

Изобретение относится к области водной токсикологии и санитарной гидробиологии и может быть использовано для оценки токсичности воды при биологическом тестировании сточных и природных пресных вод
Изобретение относится к методу аналитического биотестирования воды

Изобретение относится к области медицины, а именно гигиены и экологии, может быть использовано для анализа и дифференцировки степени чистоты воды с целью профилактики влияния воды на здоровье человека, а также для определения чистоты воды, используемой в лабораторных анализах
Изобретение относится к пищевой промышленности, биотехнологии, ликероводочной промышленности, производству безалкогольных напитков и связано с определением содержания катионов, аминов, анионов органических и неорганических кислот в различных средах

Изобретение относится к области использования микробиологических объектов для контроля загрязнения окружающей среды

Изобретение относится к аналитической химии и экологии и связано с определением микроконцентраций сурьмы в воде
Наверх