Способ очистки промывных вод гальванического производства



Владельцы патента RU 2288185:

Открытое акционерное общество "Научно-исследовательский технологический институт "НИТИ-ТЕСАР" (ОАО "НИТИ-ТЕСАР") (RU)

Изобретение относится к области очистки промывных вод электрохимического и химического производства реагентным методом с доочисткой ионным обменом с целью возврата их в замкнутый цикл для повторного применения. Способ может быть использован в гальванических производствах, цветной металлургии, теплоэнергетике и других отраслях промышленности. Для осуществления способа промывные воды гальванического производства при нанесении двухслойного никель-хромового покрытия проводят осаждение катионов и анионов с помощью насыщенного при комнатной температуре раствора гидроокиси бария с последующим отделением осадка отстаиванием и доочистку осветленной воды, причем гидроокись бария добавляют в количестве, обеспечивающем остаточную концентрацию катионов металлов и анионов кислот менее 30 мг/л, в том числе катионов бария в количестве 0,8-1,0 мг/л, а доочистку осветленной воды проводят последовательно на катионите КУ-2, а затем на анионите АВ-17. Способ обеспечивает повышение степени очистки промывной воды, увеличение периода работы смол до их регенерации, оптимизацию структуры осадка для последующего отделения, сокращение расхода реагентов, упрощение технологии. 1 табл.

 

Изобретение относится к области очистки промывных вод электрохимического и химического производств, в частности к технологии получения обессоленной воды реагентным методом с доочисткой ионным обменом с целью возврата ее для повторного применения, и может быть использовано в гальванических производствах, цветной металлургии, теплоэнергетике и других отраслях промышленности.

Известен способ обработки морской воды по А.С. №1724605 C 02 F 5/02, 1992, Б.И. №13, включающий реагентную обработку (добавление гидроокиси кальция), отделение осадка (осветление) и Na-катионирование.

Недостатком данного способа является то, что после реагентной обработки в осветленной воде остается много катионов кальция и анионов SO42.

Наиболее близким к заявляемому по технической сущности и достигаемому результату является способ получения воды по патенту РФ №2186736 кл. C 02 F 1/42; C 02 F 103/02, опубликованному 10.08.2002 г. (прототип) включающему реагентную обработку исходной воды известью или содой до рН 8,5÷11,6, отделение выпавшего осадка и пропускание осветленной воды через ионообменный фильтр с загрузкой карбоксильным катионитом.

Недостатком данного способа является то, что он имеет узкий диапазон технологических возможностей, в основном для умягчения воды, когда удаляются только катионы металлов.

Реагентная обработка известью промывных вод гальванических производств, содержащих катионы тяжелых металлов (никель, железо, медь) и анионы сильных кислот (серной, хромовой, фосфорной), не удаляет из воды анионы этих кислот и тем самым не снижает нагрузку на ионообменные смолы, что не увеличивает период работы до их регенерации. Кроме того, образующиеся гидроокиси никеля, железа, меди имеют структуру коллоидов и трудно отделяются от воды, что требует применения специального оборудования (фильтры, центрифуги).

Технический эффект изобретения - расширение технологических возможностей способа, увеличение периода работы смол до их регенерации, оптимизация структуры осадка для последующего отделения, сокращение расхода реагентов, упрощение технологии.

Указанный технический эффект достигается тем, что в способе очистки промывных вод гальванического производства, включающем осаждение реагентами катионов и анионов, отделение осадка и доочистку фильтрата ионообменными смолами, согласно заявляемому техническому решению в качестве реагента для осаждения используют насыщенный при комнатной температуре раствор гидроокиси бария в количестве, обеспечивающем значение рН промывных вод в интервале рН 7,8÷8,4, а отделение осадка производят отстаиванием.

Нами установлено, что при реагентной обработке промывной воды, содержащей катионы металлов Ni2+, Cu2+, Fe2+ и анионы SO42-, CrO42-, PO43-, насыщенным при комнатной температуре раствором гидроокиси бария до значения рН в интервале 7,8÷8,4 практически полностью удаляются из воды катионы металлов в виде осадков гидроокисей и анионы сильных кислот в виде осадка труднорастворимых солей бария. При этом соли бария (сульфат, хромат, фосфат) имеют кристаллическую структуру, легко осаждаются за счет большой атомной массы бария (137) и совместно с ними легко соосаждаются гидроокиси металлов. Небольшая остаточная концентрация в воде солей дочищается на ионообменных смолах, при этом нагрузка на них незначительная, и увеличение периода работы до их регенерации возрастает в 10 раз по сравнению с реагентной обработкой воды известью.

Способ реализуется следующим образом.

В промывную воду, содержащую катионы тяжелых металлов и анионы сильных кислот, добавляют насыщенный при комнатной температуре раствор гидроокиси бария в таких количествах, чтобы рН обработанной воды находился в интервале 7,8÷8,4. Из образовавшейся суспензии удаляют отстаиванием осадки гидроокисей металлов и соли бария сильных кислот (серной, фосфорной, хромовой). Осветленную воду пропускают последовательно через катионитовый фильтр с загрузкой катионита в Н форме и анионитовый фильтр с загрузкой анионита в ОН форме. В результате получают фильтрат - обессоленную воду с сопротивлением 1 МОм, которую можно повторно использовать для промывки деталей после всех операций технологического процесса нанесения покрытий.

В процессе фильтрации на катионите адсорбируются катионы бария, натрия и следы катионов тяжелых металлов, а на анионите - анионы соляной кислоты, борной и следы анионов серной, хромовой и фосфорной кислот. В связи с тем, что концентрация в промывной воде катионов бария, натрия и анионов соляной и борной кислот незначительны (менее 30 мг/л), цикл насыщения ионообменных смол длительный, и их регенерация производится редко, что сокращает расход реагентов и объем элюатов.

Пример.

Промывную воду с линии нанесения никелевого и хромового покрытия, содержащую Ni2+≈0,2 г/л, SO42-≈0,3 г/л, CrO42-≈0,3 г/л, Fe2+≈0,01 г/л, Cl-≈0,02 г/л с рН 2, обрабатывают насыщенным при комнатной температуре раствором гидроокиси бария (ГОСТ 4107-78) до значения рН 8,4. При этом доза гидроокиси бария составила 1 г на 1л исходной воды. Выделившийся осадок отделяют от жидкой фазы отстаиванием в течение 60 мин и получают осветленную воду следующего состава: Ni2+≈0,1 мг/л, SO42-≈1,0 мг/л, Ва2+≈1,0 мг/л, CrO42-≈0,5 мг/л, Fe2+≈1,0 мг/л, Cl-≈0,02 г/л. Осветленную воду пропускают последовательно через стеклянные колонки, в первую из которых загружен катионит КУ2-8 в Н- форме в количестве 100 см3, а во вторую - анионит АВ-17 в ОН- форме в количестве 100 см3.

Пропускание воды прекратили, когда сопротивление ее снизилось до 10 кОм. За это время через колонки было пропущено 130 л осветленной воды.

В случае реагентной обработки промывной воды гидроокисью бария до значения рН меньше 7,8 не происходит полноты осаждения гидроокисей металлов (никеля, железа), а при достижении рН более 8,4 в воде остается избыток катионов бария, что также увеличивает нагрузку на ионообменные смолы (см. таблицу 1).

Таблица 1.
Компонентный состав раствораИсходная концентрация, Содержание компонентов после обработки при различных рН, мг/л
г/л8,78,48,07,87,4
Ва2+-2,01,00,90,80,7
Ni2+0,20,10,10,150,20,4
Na+0,011,010101010
Fe2+0,050,10,10,10,10,2
SO42-0,30,91,01,01,21,5
Cl-0,022020202020
CrO42-0,30,50,50,50,70,8
Количество пропущенной воды, м3/л до регенерации смол0,11,01,31,21,10,9

Таким образом, использование в качестве реагента для осаждения насыщенного при комнатной температуре раствора гидроокиси бария в количестве, обеспечивающем значение рН промывных вод в интервале рН 7,8÷8,4, позволяет осаждать не только катионы металлов, но и анионы сильных кислот (SO4-2, PO4-3, CrO4-2), что значительно расширяет технологические возможности способа, увеличивает период работы смол до их регенерации; при этом образующийся осадок гидроокисей металлов и солей бария вследствие кристаллического строения имеет оптимальную структуру, благодаря чему не требуется дорогостоящего оборудования для его осаждения, сокращается расход реагентов и упрощается технология.

Способ очистки промывных вод гальванического производства при нанесении двухслойного никель-хромового покрытия, включающий осаждение катионов и анионов с помощью раствора гидроокиси бария с последующим отделением осадка отстаиванием и доочистку осветленной воды, отличающийся тем, что гидроокись бария добавляют в виде насыщенного при комнатной температуре раствора в количестве, обеспечивающем остаточную концентрацию катионов металлов и анионов кислот менее 30 мг/л, в том числе катионов бария в количестве 0,8-1,0 мг/л, а доочистку осветленной воды проводят последовательно на катионите КУ-2, а затем на анионите АВ-17.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики и может быть использовано в котельных и на тепловых электростанциях. .

Изобретение относится к способам обработки подземных вод, используемых для питьевого водоснабжения, содержащих одновременно железо и марганец, в условиях низких значений температуры, щелочности и жесткости воды.
Изобретение относится к способам очистки нефтесодержащих сточных вод и может быть использовано для очистки промышленных сточных вод нефтеперерабатывающих и нефтехимических заводов, а также нефтебаз, нефтепромыслов и предприятий, в производственном цикле которых образуются сточные воды, содержащие нефть и продукты переработки нефти.

Изобретение относится к способам получения водорастворимых реагентов, используемых для очистки природных и сточных вод от взвесей и загрязнений минерального и органического происхождения.
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к методам обеззараживания воды пероксидом водорода в присутствии гетерогенного катализатора и может быть использовано для уничтожения микроорганизмов в системах питьевого и оборотного водоснабжения, при подготовке воды в технологиях приготовления напитков и продуктов питания, а также для поддержания чистоты водоемов рыбохозяйственного назначения.
Изобретение относится к методам обеззараживания воды пероксидом водорода в присутствии гетерогенного катализатора и может быть использовано для уничтожения микроорганизмов в системах питьевого и оборотного водоснабжения, при подготовке воды в технологиях приготовления напитков и продуктов питания, а также для поддержания чистоты водоемов рыбохозяйственного назначения.
Изобретение относится к методам обеззараживания воды пероксидом водорода в присутствии гетерогенного катализатора и может быть использовано для уничтожения микроорганизмов в системах питьевого и оборотного водоснабжения, при подготовке воды в технологиях приготовления напитков и продуктов питания, а также для поддержания чистоты водоемов рыбохозяйственного назначения.

Изобретение относится к области теплоэнергетики и может быть использовано в котельных и на тепловых электростанциях. .

Изобретение относится к способам обработки подземных вод, используемых для питьевого водоснабжения, содержащих одновременно железо и марганец, в условиях низких значений температуры, щелочности и жесткости воды.
Изобретение относится к способам очистки нефтесодержащих сточных вод и может быть использовано для очистки промышленных сточных вод нефтеперерабатывающих и нефтехимических заводов, а также нефтебаз, нефтепромыслов и предприятий, в производственном цикле которых образуются сточные воды, содержащие нефть и продукты переработки нефти.

Изобретение относится к способам получения водорастворимых реагентов, используемых для очистки природных и сточных вод от взвесей и загрязнений минерального и органического происхождения.
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к методам обеззараживания воды пероксидом водорода в присутствии гетерогенного катализатора и может быть использовано для уничтожения микроорганизмов в системах питьевого и оборотного водоснабжения, при подготовке воды в технологиях приготовления напитков и продуктов питания, а также для поддержания чистоты водоемов рыбохозяйственного назначения.
Изобретение относится к методам обеззараживания воды пероксидом водорода в присутствии гетерогенного катализатора и может быть использовано для уничтожения микроорганизмов в системах питьевого и оборотного водоснабжения, при подготовке воды в технологиях приготовления напитков и продуктов питания, а также для поддержания чистоты водоемов рыбохозяйственного назначения.
Изобретение относится к методам обеззараживания воды пероксидом водорода в присутствии гетерогенного катализатора и может быть использовано для уничтожения микроорганизмов в системах питьевого и оборотного водоснабжения, при подготовке воды в технологиях приготовления напитков и продуктов питания, а также для поддержания чистоты водоемов рыбохозяйственного назначения.
Изобретение относится к методам обработки воды и может быть использовано для обеззараживания питьевой воды в системах водоснабжения
Наверх