Способ гетерогенно-каталитического обеззараживания воды пероксидом водорода



Владельцы патента RU 2288186:

Гутенев Владимир Владимирович (RU)

Изобретение относится к методам обработки воды и может быть использовано для обеззараживания питьевой воды в системах водоснабжения. В способе обеззараживания воды пероксид водорода вводят в воду однократно и выдерживают в течение 0,1-0,2 часа. Далее воду пропускают через слой гранулированного или таблетированного катализатора, загруженного в реактор, таким образом, чтобы время контактирования воды и слоя катализатора составляло 0,5-1 час. Катализатор получают смешением растертого в порошок пиролюзита с соединением меди, выбранным из группы: медный купорос CuSO4·5H2O, нитрат меди Cu(NO3)2, хлорид меди CuCl2, гидроксид меди Cu(OH)2, оксид меди (II), при соотношении пиролюзита и соединения меди в пересчете на ионы Cu2+, соответственно равном (100-150):1, смачиванием полученной порошкообразной смеси дистиллированной водой до получения пасты, ее таблетированием или гранулированием и подсушиванием гранул или таблеток при температуре 105-150°С. Изобретение обеспечивает упрощение процесса обеззараживания воды, снижение материальных затрат на приготовление катализатора, а также предотвращение вторичного бактериального заражения воды в течение длительного времени. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к методам обработки воды пероксидом водорода в присутствии гетерогенного катализатора, содержащего соединения марганца и меди. Оно может быть использовано для обеззараживания питьевой воды в системах водоснабжения населенных пунктов, а также предприятий пищевой индустрии.

Как известно, для обеззараживания сточных вод, содержащих органические пероксиды, используют гетерогенный катализатор - пиролюзит (RU 2048454, С 02 F 1/467, 1995). Этот метод малопригоден для обеззараживания питьевой воды, так как для катализатора необходим дорогостоящий компонент - палладий.

Известен способ обеззараживания воды, заключающийся в совместном действии пероксида водорода и 0,05-1,0 мг/л ионов меди. При этом медь не только усиливает бактерицидные свойства пероксида водорода, но и является катализатором его разложения (Савлук И.П. и др. Антимикробные свойства меди // Химия и технология воды, 1986, т.8, №6, с.65-67). Однако эффективность этого метода недостаточно высока.

Наиболее близким аналогом предложенного изобретения по назначению, совокупности существенных признаков и достигаемому результату является известный из патента RU 2213707, опубликованный 10.10.2003 г., способ обеззараживания воды, по которому в емкость с исходной водой добавляют часть используемого в процессе пероксида водорода и выдерживают, затем в воду вводят гетерогенный катализатор, выдерживают, добавляют оставшуюся часть пероксида водорода и вновь выдерживают. Катализатор получают смешением растертого в порошок пиролюзита с частицами мелко раздробленного металлического серебра при массовом соотношении пиролюзит : серебро, равном (800-1500):1, последующим добавлением к смеси воды, подсушиванием полученной пасты и формованием на прессе в виде таблеток. Этот способ, хотя и эффективен в бактерицидном отношении, отличается сложностью технологической схемы, а также необходимостью применения дорогостоящего и дефицитного серебра.

Технической задачей, на решение которой направлено настоящее изобретение, являлось упрощение процесса обеззараживания воды, снижение материальных затрат на приготовление катализатора, а также предотвращение вторичного бактериального заражения воды в течение длительного времени (не менее месяца).

Поставленная задача решается тем, что способ обеззараживания воды, включающий ее обработку пероксидом и гетерогенным катализатором на основе пиролюзита, отличается от наиболее близкого аналога тем, что пероксид водорода вводят в воду однократно, выдерживают в течение 0,1-0,2 часа и пропускают через слой гранулированного или таблетированного катализатора, загруженного в реактор, таким образом, чтобы время контактирования воды и слоя катализатора составляло 0,5-1 час, при этом указанный катализатор получают смешением растертого в порошок пиролюзита с соединением меди, выбранным из группы: медный купорос CuSO4·5H2O, нитрат меди Cu(NO3)2, хлорид меди CuCl2, гидроксид меди Cu(ОН)2, оксид меди (II), при соотношении пиролюзита и соединения меди в пересчете на ионы Cu2+ соответственно равном (100-150):1, смачиванием полученной порошкообразной смеси дистиллированной водой до получения пасты, ее таблетированием или гранулированием и подсушиванием гранул или таблеток при температуре 105-150°С.

Дополнительно способ может отличаться тем, что после обработки катализатором воду пропускают через механический фильтр.

Использование катализатора в виде таблеток или гранул снижает до минимума риск попадания его частиц в питьевую воду. Кроме того, их удобно хранить до использования в процессе обеззараживания. Для полного предотвращения возможности попадания частиц катализатора в воду используют механический фильтр (мелкую сетку), установленный на выходе из реактора.

Совместная обработка воды пероксидом водорода и предлагаемым гетерогенным катализатором более чем на порядок (по сравнению с применением только пероксида водорода или только катализатора) увеличивает глубину обеззараживания воды. Поскольку катализатор одновременно разлагает остатки пероксида водорода по реакции Н2О2→Н2О+1/2O2, вода быстро освобождается от пероксида.

Ниже приведены примеры осуществления предложенного способа.

Пример 1.

В воду с концентрацией микроорганизмов E.coli 1,5·104 особей/л при температуре 19±1°С и рН 6,7 вводили пероксид водорода с концентрацией 300 мг/л. Далее воду объемом 100 л пропускали через реактор со слоем гетерогенного катализатора в течение 0,5 часа, на выходе из реактора устанавливали механический фильтр. Катализатор получали смешением растертого в порошок пиролюзита с порошком медного купороса CuSO4·5H2O в соотношении пиролюзит : купорос (в расчете на Cu2+), равном 150:1, соответственно. Полученную механическую смесь смачивали дистиллированной водой до состояния пасты, далее ее гранулировали, подсушивали при температуре 150°С и загружали в реактор в количестве 0,2 кг. Результаты испытаний представлены в таблице.

Пример 2.

Опыты проводили аналогично примеру 1. Отличия состояли в том, что: 1) в качестве медьсодержащего компонента катализатора использовали нитрат меди Cu(NO3)2; 2) соотношение пиролюзит : нитрат меди (в пересчете на Cu2+) было равно 125:1; 3) сушку гранул проводили при температуре 105°С. Результаты испытаний представлены в таблице.

Пример 3.

Опыты проводили аналогично примеру 1. Отличия состояли в том, что: 1) в качестве соединения меди в катализаторе использовали хлорид меди CuCl2; 2) сушку гранул проводили при температуре 125°С. Результаты испытаний представлены в таблице.

Пример 4.

Опыты проводили аналогично примеру 1. Отличия: 1) в качестве соединения меди использовали гидроксид меди Cu(ОН)2; 2) соотношение пиролюзит : гидроксид меди (в пересчете на Cu2+) было равно 100:1; 3) сушку полученных таблеток проводили при температуре 105°С. Результаты испытаний представлены в таблице.

Пример 5.

Опыты проводили аналогично примеру 4. Отличия состояли в том, что в качестве соединения меди использовали оксид меди (II) CuO. Результаты испытаний представлены в таблице.

Как следует из полученных данных (см. таблицу), предлагаемый способ практически не отличается по бактерицидной эффективности от известного способа. В обработанной воде были обнаружены ионы меди и марганца (входящего в состав пиролюзита) в количестве, меньшем, чем их ПДК. Частицы пиролюзита и соединений меди в воде обнаружены не были.

Исследования, выполненные для установления уровня бактериальной устойчивости обработанной известным и предлагаемым способами воды, показали, что во всех случаях вода сохраняет устойчивость к внешнему бактериальному загрязнению в течение длительного времени - не менее месяца.

Преимуществами предложенного способа являются: 1) отсутствие в катализаторе серебра (оно заменено на менее дефицитные и доступные по цене соединения меди); 2) более простая схема обеззараживания (в одну стадию); 3) более простая технология получения катализаторов; 4) обеспечивается длительная сохранность воды.

СПОСОБ ГЕТЕРОГЕННО-КАТАЛИТИЧЕСКОГО ОБЕЗЗАРАЖИВАНИЯ ВОДЫ ПЕРОКСИДОМ ВОДОРОДА

Таблица

Результаты испытаний обеззараживания воды (исходное число микроорганизмов 1,5·104 особей/л)
КатализаторЧисло микроорганизмов в воде особей/л
через суткичерез 5 сутокчерез 15 сутокчерез 30 суток
По примеру 1не обнар.не обнар.15
По примеру 2не обнар.124
По примеру 32336
По примеру 41348
По примеру 53266
Известный из RU 2213707не обнар.2410

1. Способ обеззараживания воды, включающий ее обработку пероксидом и гетерогенным катализатором на основе пиролюзита, отличающийся тем, что пероксид водорода вводят в воду однократно, выдерживают в течение 0,1-0,2 ч и пропускают через слой гранулированного или таблетированного катализатора, загруженного в реактор, таким образом, чтобы время контактирования воды и слоя катализатора составляло 0,5-1 ч, при этом указанный катализатор получают смешением растертого в порошок пиролюзита с соединением меди, выбранным из группы медный купорос CuSO4·5H2O, нитрат меди Cu(NO3)2, хлорид меди CuCl2, гидроксид меди Cu(ОН)2, оксид меди (II), при соотношении пиролюзита и соединения меди в пересчете на ионы Cu2+ соответственно (100-150):1, смачиванием полученной порошкообразной смеси дистиллированной водой до получения пасты, ее таблетированием или гранулированием и подсушиванием гранул или таблеток при температуре 105-150°С.

2. Способ по п.1, отличающийся тем, что после обработки катализатором воду пропускают через механический фильтр.



 

Похожие патенты:
Изобретение относится к области очистки промывных вод электрохимического и химического производства реагентным методом с доочисткой ионным обменом с целью возврата их в замкнутый цикл для повторного применения.
Изобретение относится к области очистки промывных вод электрохимического и химического производства реагентным методом с доочисткой ионным обменом с целью возврата их в замкнутый цикл для повторного применения.

Изобретение относится к области теплоэнергетики и может быть использовано в котельных и на тепловых электростанциях. .

Изобретение относится к способам обработки подземных вод, используемых для питьевого водоснабжения, содержащих одновременно железо и марганец, в условиях низких значений температуры, щелочности и жесткости воды.
Изобретение относится к способам очистки нефтесодержащих сточных вод и может быть использовано для очистки промышленных сточных вод нефтеперерабатывающих и нефтехимических заводов, а также нефтебаз, нефтепромыслов и предприятий, в производственном цикле которых образуются сточные воды, содержащие нефть и продукты переработки нефти.

Изобретение относится к способам получения водорастворимых реагентов, используемых для очистки природных и сточных вод от взвесей и загрязнений минерального и органического происхождения.
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к методам обеззараживания воды пероксидом водорода в присутствии гетерогенного катализатора и может быть использовано для уничтожения микроорганизмов в системах питьевого и оборотного водоснабжения, при подготовке воды в технологиях приготовления напитков и продуктов питания, а также для поддержания чистоты водоемов рыбохозяйственного назначения.
Изобретение относится к области очистки промывных вод электрохимического и химического производства реагентным методом с доочисткой ионным обменом с целью возврата их в замкнутый цикл для повторного применения.
Изобретение относится к области очистки промывных вод электрохимического и химического производства реагентным методом с доочисткой ионным обменом с целью возврата их в замкнутый цикл для повторного применения.

Изобретение относится к области теплоэнергетики и может быть использовано в котельных и на тепловых электростанциях. .

Изобретение относится к способам обработки подземных вод, используемых для питьевого водоснабжения, содержащих одновременно железо и марганец, в условиях низких значений температуры, щелочности и жесткости воды.
Изобретение относится к способам очистки нефтесодержащих сточных вод и может быть использовано для очистки промышленных сточных вод нефтеперерабатывающих и нефтехимических заводов, а также нефтебаз, нефтепромыслов и предприятий, в производственном цикле которых образуются сточные воды, содержащие нефть и продукты переработки нефти.

Изобретение относится к способам получения водорастворимых реагентов, используемых для очистки природных и сточных вод от взвесей и загрязнений минерального и органического происхождения.
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к технике обработки воды окислителями и может быть использовано для обеззараживания питьевой воды, в том числе в системах водоснабжения. .
Изобретение относится к методам обеззараживания воды пероксидом водорода в присутствии гетерогенного катализатора и может быть использовано для уничтожения микроорганизмов в системах питьевого и оборотного водоснабжения, при подготовке воды в технологиях приготовления напитков и продуктов питания, а также для поддержания чистоты водоемов рыбохозяйственного назначения.
Изобретение относится к способам комплексной обработки воды окислением с помощью озонирования и ионов меди
Наверх