Вихрединамический сепаратор

Изобретение предназначено для отделения дисперсных частиц от газов или паров с участием инерционных сил. Вихрединамический сепаратор с противоточным направлением входного и очищенного потоков включает вертикальный корпус с набором кольцеобразных элементов, штуцер и трубопровод вывода очищенного потока, размещенный сверху штуцер входного потока, расположенные снизу штуцер и трубопровод вывода твердых частиц. Начальный участок штуцера вывода очищенного потока выполнен с диаметром, большим диаметра штуцера входного потока, и снабжен конической оболочкой со штуцером и трубопроводом вывода вторичного осадка. Штуцер вывода твердых частиц пропущен через оболочку. Трубопровод вывода вторичного осадка соединен с трубопроводом вывода твердых частиц под острым углом или через эжекционную камеру. Технический результат: повышение степени очистки. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к устройствам для разделения смесей, состоящих из твердых микрочастиц и газообразных сред, а более конкретно к конструкциям для отделения дисперсных частиц от газов или паров с участием инерционных сил, и может быть применено в любых областях, использующих разделение указанных веществ.

Известны конструкции аналогов - вихревых пылеуловителей циклонного типа, описанные, например, в обзоре Ткачевой В.А., Антиповой Е.Д., и Бордяковского А.В. «Оборудование для обеспыливания воздуха в системах вентиляции химических производств». Обзорная информация. М., НИИТЭХИМ, 1984, стр.11 (Рис.2), используемые для отделения твердых микрочастиц силы инерции.

Конструкции циклонных аналогов состоят из вертикально расположенного трубного корпуса, в верхнюю часть которого тангециально введен штуцер подачи запыленного потока. Нижняя конусная часть корпуса соединена со штуцером отвода уловленной пыли. В верхнее днище (герметизирующее) трубного корпуса сверху вставлена центральная труба отвода очищенного потока, заглубленная внутрь корпуса (через днище) на определенную высоту.

Работа циклонов-аналогов заключается в следующем. Запыленный поток через штуцер тангенциального ввода с большой скоростью подается в трубный (цилиндрический) корпус циклона. Попадая в корпус, поток опускается вниз, делая несколько оборотов по периметру цилиндра. Затем, описывая спираль меньшего диаметра в обратном направлении (вверх), выходит из аппарата по центральной трубе. Частицы пыли отделяются под действием центробежной силы вращения первого потока (большого диаметра), оседают на внутренней поверхности стенки и по конусу сползают в нижнюю суженную часть, откуда поступают в пылесборник.

Недостатком конструкций-аналогов является невысокая степень очистки потока, особенно при частицах малого размера, обусловленная отсутствием четкой конструктивной границы между внешним запыленным и внутренним очищенным спиральными потоками. Недостаточно «массивные» частицы (малого размера) для данной скорости потока не отбрасываются к стенке, а движутся по внутренней - пограничной образующей запыленного потока. В результате контактного пограничного смешивания часть частиц попадает в выходной очищенный поток.

Наиболее близким по технической сущности решением, принятым за прототип, является конструкция вихрединамического сепаратора, описанная в статье Буренина В.В. «Очистка воздуха от производственной пыли, токсичных паров и газов с помощью фильтров-пылеуловителей». Журнал «Безопасность труда в промышленности» №1, 2005 г, с.69, Рис 3.

Вихрединамический сепаратор, принятый за прототип, состоит из вертикально расположенного цилиндрического трубного корпуса с набором кольцеобразных элементов в виде сужающегося к низу конуса. Входной штуцер - смешанного потока - размещен сверху корпуса.

Штуцеры и трубопроводы очищенного потока и потока твердых частиц расположены в нижней части (корпуса). Внутренняя поверхность каждого кольцеобразного элемента выполнена специальной формы - обратноповернутой параболы с острой обрывающейся кромкой на нижнем торце каждого элемента. Последний, самый нижний, кольцеобразный элемент или несколько элементов соединены со штуцером вывода потока твердых частиц.

Работа конструкции-прототипа заключается в следующем. Смешанный поток, попадая во входной штуцер, направляется во внутреннее конусное пространство набора кольцеобразных элементов. По мере движения потока на нижнем торце каждого кольцеобразного элемента возникает кольцевой вихрь, перекрывающий свой межэлементный зазор, отталкивающий твердые частицы внутрь - в центральную часть потока и затем, соответственно (по потоку) - вниз конусного «мешка». В то же время очищенная газовая (паровая) фаза, свободно проникая в межэлементное пространство, направляется вниз, в штуцер вывода очищенного потока. Таким образом, осуществляется разделение фаз. При этом набор кольцеобразных элементов представляет как бы конструктивную границу устройства разделения фаз.

Недостатком конструкции прототипа является низкая степень очистки - неполное разделение смешанного потока. Указанный недостаток характерен преимущественно для низкоскоростных режимов работы вихрединамического сепаратора - начальных пусковых и, наоборот, конечных предостановочных периодов, а также всех переменных, переходных, настроечных вариантов режимов.

Целью изобретения является повышение степени очистки - полноты разделения смешанного потока в низкоскоростных неустановившихся и других переменных режимах работы сепаратора.

Указанная цель достигается тем, что в известном вихрединамическом сепараторе, включающем вертикально расположенный корпус с набором кольцеобразных элементов, с размещенным сверху штуцером входного смешанного потока, снизу - штуцерами и трубопроводами вывода очищенного потока и потока твердых частиц, начальный участок штуцера вывода очищенного потока выполнен с диаметром, большим диаметра штуцера входного потока, причем направление очищенного выходного потока на начальном участке встречно направлению входного. Штуцер вывода очищенного потока выполнен в виде отвода большего диаметра, чем штуцер входа, причем корпус с набором кольцеобразных элементов помещен внутрь отвода и соединен со снаружи расположенным штуцером входного потока. Нижняя часть начального участка штуцера очищенного потока снабжена герметичной конусной оболочкой. Конусная оболочка снабжена штуцером и трубопроводом вывода вторичного осадка, соединенным с основным трубопроводом вывода твердых частиц под острым углом. Трубопровод вывода вторичного осадка соединен с основным трубопроводом вывода твердых частиц через эжекционную камеру. Набор кольцеобразных элементов выполнен в виде непрерывной спирали. Зазор между кольцеобразными элементами выставлен скрепляющими скобами. Скобы выполнены из листа толщиной, равной половине зазора.

Изобретение иллюстрируется Фиг.1, 2.

На Фиг.1 изображена конструкция предложенного сепаратора с начальным участком штуцера вывода очищенного потока большего диаметра, чем штуцер ввода. Начальный участок вывода штуцера соединен (внизу) с конической оболочкой, снабженной трубопроводом вывода вторичного осадка, и сверху герметизирован плоским днищем с патрубками; Δ - межэлементный зазор; α - острый угол соединения трубопроводов.

На Фиг.2 представлен сепаратор со штуцером вывода очищенного потока в виде отвода. Трубопровод вторичного осадка подсоединен к трубопроводу твердых частиц через эжекционную камеру.

Конструкция предложенного сепаратора состоит из корпуса 1 с верхним штуцером 2 входа смешанного потока. В корпусе 1 размещены кольцеобразные элементы 3.

В варианте на Фиг.1 корпус 1 герметизирующим верхним днищем 4 соединен с начальным участком 5 штуцера 6 вывода очищенного потока. В варианте на Фиг.2 штуцер вывода очищенного потока выполнен в виде отвода 6 большего диаметра, чем диаметр входного штуцера 2. В этом варианте начальным участком 5 служит развернутая вниз вертикальная часть отвода 6. Нижняя часть начального участка 5 снабжена герметичной конусной оболочкой 7. Через вершину (опрокинутого конуса) оболочки 7 пропущен штуцер 8, соединенный с трубопроводом 9 и арматурой 10 вывода потока твердых частиц. Также в вершинную часть оболочки 7 врезан штуцер 11, скрепленный с трубопроводом 12 и арматурой 13 вывода вторичного осадка (Фиг.1; 2). Трубопровод 12 соединен с трубопроводом 9 под острым углом α (для образования засасывающего - эжекционного эффекта в трубопроводе 12) Фиг.1.

В варианте на Фиг.2 трубопроводы 9 и 12 соединены через эжекционную камеру 14.

Работа конструкции предложенного вихрединамического сепаратора заключается в следующем. С пуском в работу сепаратора смешанный поток поступает во входной штуцер 2 на корпусе 1. Так как в начальном - неустановившемся режиме кольцевые защитные вихри в зазорах Δ между элементами 3 еще не образованы, часть частиц проникает через указанные зазоры Δ и попадает в пространство между корпусом 1 и набором кольцеобразных элементов 3.

Газовый поток увлекает частицы в начальный участок 5 штуцера вывода очищенного потока 6. Поскольку диаметр начального участка 5 больше диаметра входного штуцера 2 (а площади сечений отличаются еще больше - уже во второй степени - в «квадрат» раз), происходит резкое - многоразовое падение скорости потока.

Частицы со скоростью витания, превышающей уменьшенную скорость потока (на начальном участке 5), выпадают во вторичный осадок, т.е. опускаются под действием силы тяжести на внутреннюю поверхность конусной оболочки 7, и затем через штуцер 11, трубопровод 12 с арматурой 13 выводятся из сепаратора.

С началом установившегося режима работа вихрединамического сепаратора практически не отличается от работы конструкции прототипа, за исключением того, что частицы, случайно проникшие в корпус 1 при самоочищающих изменениях формы и размеров кольцевых вихрей (возле зазоров Δ между элементами 3), а также при других изменениях режима, по описанному выше механизму, также попадают в конусную часть 7. «Обычный» механизм работы вихрединамического сепаратора (см. также описание работы прототипа) состоит в следующем. Смешанный поток, поступающий в штуцер входа 2 и затем в конусный набор кольцеобразных элементов 3, образует по краям внутренней поверхности этого конуса - в местах зазоров Δ серию тороидальных вихрей. Эти местные вихри защищают зазоры между элементами 3 от проникновения в них твердых частиц. Твердые частицы отталкиваются вихрями внутрь, в центральную часть потока, осевым напором выносятся в нижнюю - суженную часть кольцеобразных элементов и затем в штуцер 8 и трубопровод 9, с арматурой 10, вывода потока твердых частиц. В отличие от частиц, чистая газовая (паровая) фаза проникает в зазоры Δ между кольцеобразными элементами, попадая в пространство между корпусом 1 и набором элементов 3. После прохождения нижнего среза корпуса 1, газ входит в начальный участок 5 штуцера 6 выхода очищенного потока. Мгновенно в несколько раз падает его скорость (в связи с расширением сечения), меняется его направление на противоположное (снизу - вверх) и в верхнюю часть конструкции через штуцер 6 вывода, поступает полностью очищенный поток, который направляется на дальнейшее использование. По мере накопления твердых частиц в штуцере 8 и трубопроводе 9 (т.е. по мере их заполнения первичным осадком) включается (открывается) ручным или автоматическим управлением продувочная арматура 10. Одновременно с арматурой 10 открывается арматура 13 вывода вторичного осадка, накопившегося на внутренней поверхности оболочки 7. Так как скоростной напор в трубопроводе 9 превышает напор потока в трубопроводе 12, то при движении - сбросе твердых частиц первичного (вихрединамического осаждения) в зоне присоединения трубопровода 12 (под углом α) дополнительно возникает вакуумный - засасывающий эффект, который создает дополнительное «стимулирование» для отвода частиц вторичного осаждения (с конусной поверхности 7 Фиг. 1; 2). Если вакуумный эффект недостаточен, в месте соединения трубопроводов устанавливается специальная эжекционная камера 14 (вариант Фиг.2), обеспечивающая усиление вакуумирования за счет специально вводимого конструктивного исполнения и расположения элементов трубопроводов 9 и 12 (конфузор; камера; диффузор).

Благодаря предложенному решению повышена степень очистки - полнота разделения фаз. Исключены проскоки твердой фазы в поток выходного очищенного газа (пара). Точнее, безусловно возникающие в нестандартных режимах работы (вихрединамического сепаратора) проскоки твердых частиц через межэлементные зазоры уловлены предложенным конструктивным изменением - дополнением эффекта вихрединамического разделения, эффектом сопутствующего гравитационного выпадения частиц (вторичного осаждения) в той же конструкции сепаратора (без направления потока «пульсирующей-меняющейся чистоты» на вторую ступень очистки, например в пылеосадительную камеру и др.) Эффект вторичного гравитационного осаждения частиц достигнут простым техническим приемом - увеличением выходного сечения потока (начальный участок 5 штуцера 6) и разворотом направления выходящего первично-очищенного потока на 180°. При этом конструктивно обеспечен сбор (введена коническая оболочка 7) и оптимальный (одновременный с первичным) вывод при вакуумном отсосе вторичного осадка (введены штуцер 11; трубопровод 12; арматура 13; эжекционная камера 14).

Предложенная конструкция при незначительном удорожании - замена отвода вывода очищенного потока на отвод большего диаметра, ввод конической оболочки и линии вывода вторичного осадка позволяет расширить диапазон расходной нагрузки по газу с гарантированной полнотой разделения потоков (требуемой степенью очистки), обеспечить отделение твердых частиц в неустановившихся режимах эксплуатации.

1. Вихрединамический сепаратор с противоточным направлением входного и очищенного потоков, включающий вертикальный корпус с набором кольцеобразных элементов, штуцер и трубопровод вывода очищенного потока, размещенный сверху штуцер входного потока, расположенные снизу штуцер и трубопровод вывода твердых частиц, отличающийся тем, что начальный участок штуцера вывода очищенного потока выполнен с диаметром, большим диаметра штуцера входного потока, и снабжен конической оболочкой со штуцером и трубопроводом вывода вторичного осадка, при этом штуцер вывода твердых частиц пропущен через оболочку.

2. Вихрединамический сепаратор по п.1, отличающийся тем, что трубопровод вывода вторичного осадка соединен с трубопроводом вывода твердых частиц под острым углом или через эжекционную камеру.



 

Похожие патенты:

Изобретение относится к устройствам для очистки воздушного потока от легких примесей, например, в пневмосистемах зерно- и семяочистительных машин, в устройствах пневматического транспортирования сыпучих мелкозернистых материалов.

Изобретение относится к технике пылеуборки и обеспыливания, может быть использовано в вакуумных системах уборки пыли. .

Изобретение относится к устройствам для очистки воздуха от пыли. .

Изобретение относится к устройствам для очистки потока воздуха от примесей и может быть использовано в различных отраслях народного хозяйства, например в сельскохозяйственном производстве, мукомольно-элеваторной и комбикормовой промышленности при очистке и сепарации зерновых смесей.

Изобретение относится к устройствам для очистки газовых сред от любых аэрозольных туманов, размеры конденсационных частиц которых относятся к классу высокодисперсных образований, в частности аэрозоля диоктилфталата, интегральное распределение частиц которого находится в диапазоне 0,2-0,7 мкм, но может быть также использовано для улавливания тонко- и грубодисперсных частиц.

Изобретение относится к области энергетики, к устройствам для сепарации пыли и может быть использовано в углеразмольной технике, химической технологии. .

Изобретение относится к устройствам для очистки газовых сред от аэрозоля туманов, конденсационные частицы которых не превышают 1 мкм, и может быть использовано в любой отрасли промышленности, где в технологических или вентиляционных процессах необходима подобная операция.

Изобретение относится к области разделения многокомпонентных сред, в частности к устройствам для разделения потоков аэро- и гидросмесей с газовыми, жидкими и твердыми компонентами различной плотности.

Изобретение относится к устройствам очистки газовых потоков от взвесей и может быть использовано в системах очистки деревообрабатывающих, металлургических и других производств, а также в системах пневмотранспорта, Наиболее близким к предлагаемому техническому решению по сущности и достигаемому результату, по мнению авторов, является "Прямоточный сепаратор" по патенту РФ 2079342 С1, кл.

Изобретение относится к устройствам для очистки газовых сред от аэрозоля туманов, конденсационные частицы которых не превышают 1 мкм, и может быть использовано в любой отрасли промышленности, где в технологических или вентиляционных процессах необходима подобная операция

Изобретение относится к области энергетического машиностроения и может быть использовано для очистки пара или газа от твердых или жидких частиц

Изобретение относится к области борьбы с загрязнением атмосферного воздуха

Изобретение относится к устройствам для отделения примесей от воздушного потока и может быть использовано в зерноочистительных машинах для очистки отработанного воздуха от легких примесей и пыли

Сепаратор // 2379091
Изобретение относится к теплообменной технике и предназначено для использования в качестве сепарационного устройства при достижении необходимого технологического процесса разделения газожидкостного потока на компоненты

Сепаратор // 2380139
Изобретение относится к теплообменной технике и предназначено для использования в качестве сепарационного устройства при достижении необходимого технологического процесса разделения газожидкостного потока на компоненты

Сепаратор // 2380140
Изобретение относится к теплообменной технике и предназначено для использования в качестве сепарационного устройства при достижении необходимого технологического процесса разделения газожидкостного потока на компоненты

Изобретение относится к области нефтегазового и химического машиностроения, в частности к сепарационным и фильтрационным устройствам

Изобретение относится к транспортному машиностроению и касается устройств очистки воздуха от пыли, капельной влаги, снега в системах воздухоснабжения электрооборудования транспортных средств
Наверх