Авиационная бомба с биротативным газотурбинным двигателем

Изобретение относится к боевой технике и предназначено для бомбардировки наземных, надводных и подводных целей. Технический результат - повышение скорости полета, дальности и точности бомбометания и расширение функциональных возможностей бомбы. Бомба содержит корпус осесимметричной формы, состоящий из двух частей: вращающейся и невращающейся, внутри которого установлено взрывное устройство, и систему управления. Внутри корпуса также установлена емкость с топливом, биротативный газотурбинный двигатель, работающий на жидком топливе, содержащий воздухозаборник, компрессор, камеру сгорания и турбину. При этом топливный бак соединен топливопроводом, в котором установлен топливный насос с приводом насоса, соединенным с контроллером управления и с камерой сгорания, а система управления содержит бортовой компьютер, соединенный с контроллером управления. Контроллер управления соединен с регуляторами. Привод насоса соединен с контроллером управления, который, в свою очередь, соединен с бортовым компьютером. К бортовому компьютеру подключено приемно-передающее устройство с антенной. Бомба содержит приемник системы глобального позиционирования, подключенный к антенне и к бортовому компьютеру. К бортовому компьютеру может быть подключен контроллер взрывателя, подключенный, в свою очередь, к взрывному устройству. 5 з.п. ф-лы, 6 ил.

 

Изобретение относится к военной технике, в частности к средствам бомбардировки наземных надводных и подводных целей.

Известна авиационная бомба, содержащая систему управления по патенту РФ на изобретение № 2232973.

Недостаток - низкая скорость полета на конечном участке траектории и недостаточная эффективность управления.

Известна управляемая авиационная бомба РХ 1400, Германия, сайт Интернет http://base13/glasnet.ru. Эта бомба содержит корпус, внутри которого установлено взрывное устройство, систему управления, стабилизаторы, привода стабилизаторов.

Недостатки - низкая скорость на последнем участке траектории и очень низкая точность попадания. Вероятность поражения линкора при бомбометании с высоты 7 км составляет 0,13, а при бомбометании с высоты 4...5 км примерно 0,2...0,3, что практически не допустимо из-за большой стоимости бомбы и невозможности бомбардировок с более низких и даже с указанных высот. При бомбардировке с высот 20 км...30 км, бомбардировщик остается практически неуязвимым, но вероятность попадания даже управляемой авиационной бомбы в круг диаметром 1 км равна практически нулю.

Задача создания изобретения - повышение скорости полета авиационной бомбы, и точности попадания при бомбометании с очень больших высот.

Решение указанных задач достигнуто в авиационной бомбе с биротативным газотурбинным двигателем, содержащая корпус осесимметричной формы, выполненный с вращающейся и невращающейся частями, внутри которого установлено взрывное устройство, система управления, топливный бак, биротативный газотурбинный двигатель с внешним и внутренним роторами, работающий на жидком топливе, с воздухозаборником, компрессором, камерой сгорания и турбиной, при этом топливный бак соединен топливопроводом, в котором установлен топливный насос с приводом насоса, соединенным с контроллером управления и с камерой сгорания, а система управления содержит бортовой компьютер, соединенный с контроллером управления. Авиационная бомба снабжена регуляторами, соединенными с контроллером управления. Привод насоса соединен с контроллером управления. Авиационная бомба снабжена приемно-передающим устройством с антенной, подключенной к бортовому компьютеру. Авиационная бомба снабжена приемником системы глобального позиционирования, подключенным к антенне и бортовому компьютеру. Авиационная бомба снабжена контроллером взрывателя, подключенным к бортовому компьютеру и взрывному устройству.

Проведенные патентные исследования показали, что предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью.

Сущность изобретения поясняется на фиг.1...6, где

на фиг.1 приведена принципиальная схема простейшего варианта авиационной бомбы,

на фиг.2 приведена схема авиационной бомбы с автономным управлением,

на фиг.3 приведена радиоуправляемая авиационная бомба,

на фиг.4 приведена авиационная бомба с управлением при помощи системы глобального позиционирования,

на фиг.5 приведена авиационная бомба с видеокамерой,

на фиг.6 приведена схема управляемого (бесконтактного) подрыва взрывного устройства авиационной бомбы.

Авиационная бомба (фиг.1) содержит осесимметричный корпус 1, содержащий цилиндрическую и коническую части. На цилиндрической части установлены четыре стабилизатора 2, выполненные с возможностью поворота для управления полетом авиационной бомбы. Внутри корпуса 1 установлены взрывное устройство 3 и топливный бак 4. Предпочтительно топливный бак 3 выполнен торроидальной формы.

Также внутри корпуса 1, вдоль его оси в центральной части установлен газотурбинный двигатель 5, работающих на жидком топливе возможно применение сверхзвукового газотурбинного двигателя). Авиационная бомба имеет систему управления, установленную внутри корпуса 1.

Биротативный газотурбинный двигатель 5 состоит из воздухозаборника 6 с центральным обтекателем конической формы, компрессора 7, состоящего в свою очередь из статора компрессора 8 и ротора компрессора 9, камеры сгорания 10, с форсунками 11, к которым подключен топливопровод 12 с топливным насосом 13, имеющим привод насоса 14. За камерой сгорания 10 установлена турбина 15, содержащая сопловой аппарат 16 и рабочее колесо турбины 17. На выходе турбины 15 установлено реактивное сопло 18. По периферии установлены четыре управляющих сопла 19. На валу 20 установлены все узлы ротора, а именно ротор компрессора 9 и рабочее колесо турбины 17. Все остальные узлы газотурбинного двигателя 4 образуют статор 21, в который входят сверхзвуковой воздухозаборник 6, статор компрессора 8, камера сгорания 10 и сверхзвуковое реактивное сопло 18. Статор двигателя 21 является внешним ротором и вращается в противоположную сторону. Система управления содержит регуляторы 23, к которым подключен контроллер управления 24, который подключен к бортовому компьютеру 25. Контроллер управления 24 также соединен с приводом насоса 14 (фиг.3).

Система управления содержит акселерометр 26 и магнетометр 27 для измерения углов ориентации снаряда в полете, которые соединены с бортовым компьютером 22. К бортовому компьютеру 25 может быть подсоединено приемно-передающее устройство 28 (фиг.4), к которому подсоединена антенна 29. Антенна 29 имеет кольцевую форму, а участок корпуса 1 в районе расположения антенны 29 выполнен радиопрозрачным. Все соединения выполнены проводными связями 30.

Внутри корпуса 1 (фиг.5) может быть установлено приемное устройство системы глобального позиционирования 31, который также подключен к бортовому компьютеру 25 и к антенне 29. В глобальную систему позиционирования (Глонас или ОР8) входят спутники 33, связанные с антенной 29 по радиоканалам 32.

Для управления может использоваться видеосигнал с видеокамеры 34. Для этого возможна установка во вращающейся части корпуса 1 видеокамеры 34, которая соединена с бортовым компьютером 25 (фиг.6).

Возможно применение схемы (фиг.1) подрыва с контроллером подрыва 35, подключенным к бортовому компьютеру 25 и к взрывному устройству 4.

Бомба может быть оборудована стабилизаторами 36, закрепленными на внешней стороне корпуса 1 в его нижней части (фиг.1).

При применении бомбы в оперативную память бортового компьютера 25 вводят исходные данные полета. Биротативная авиационная бомба сбрасывается с бомбардировщика, потом запускают газотурбинный двигатель 5, при этом бортовой компьютер 25 подает команду на привод насоса 14 и на топливный насос 13. Топливо подается из топливного бака 4 в камеру сгорания 10, где воспламеняется при помощи электрозапальника (на фиг.1...6 не показан). Продукты сгорания приводят в действие рабочее колесо турбины 17, которое раскручивает через вал 20 ротор компрессора 9.

Применение жидкого топлива, а также кислорода атмосферного воздуха позволяет получить преимущество в дальности полета по сравнению с твердотопливными реактивными снарядами, т.к. теплотворная способность жидкого топлива больше, чем у твердого в 3...4 раза, а окислитель в форме кислорода воздуха берется из атмосферы.

При полете приемник системы глобального позиционирования 31 (системы Глонас или ОР8) принимает сигнал с трех спутников 33 системы по радиоканалам 32 и определяет собственные координаты. Используя заложенную программу посредством воздействия бортового компьютера 25 привод насоса 14, и далее на топливный насос 13 можно уменьшить или увеличить тягу газотурбинного двигателя 5, и тем самым изменить траекторию полета бомбы.

По команде с бортового компьютера 25, переданной на контроллер подрыва 35 (фиг.1), взрывное устройство 2 может быть взорвано, например в полете.

Управление снарядом по углам тангажа, рыскания и крена осуществляется согласно фиг.1 посредством включения управляющих сопел 19. Исходные данные об угловой ориентации бомбы постоянно контролируют акселерометр 26 и магнетометр 27. Магнетометр 27 определяет азимут движения бомбы, а акселерометр 26, его отклонение от направления вектора тяжести. Размещение этих датчиков в невращающемся корпусе 1 исключает влияние центробежных сил на показания датчиков.

Применение изобретения позволило:

- повысить скорость авиационной бомбы до сверхзвуковой за счет применения газотурбинного двигателя,

- повысить точность попадания до 2...5 м при бомбометании с высоты более 20 км,

- повысить мощность и КПД газотурбинного двигателя при меньших габаритах - обеспечить хорошую стабилизацию бомбы в полете из-за его вращения с огромной угловой скоростью,

- уменьшить нагрузки на приборы и датчики системы управления бомбы, за счет их размещения в невращающейся части корпуса, стабилизировать положение бомбы в полете,

- уменьшить габариты биротативного газотурбинного двигнателя и центробежные нагрузки на внешний и внутренний роторы за счет их вращения в разные стороны и создания таких условий, что с точки зрения аэродинамики и газодинамики считается, что относительная скорость вращения роторов равна сумме их окружных скоростей, в то же время реальные скорости в 2 раза меньше, а центробежные нагрузки ниже почти в 4 раза,

- улучшить и упростить управляемость бомбой в полете.

1. Авиационная бомба с биротативным газотурбинным двигателем, содержащая корпус осесимметричной формы, выполненный с вращающейся и невращающейся частями, внутри которого установлено взрывное устройство, система управления, топливый бак, биротативный газотурбинный двигатель с внешним и внутренним роторами, работающий на жидком топливе, с воздухозаборником, компрессором, камерой сгорания и турбиной, при этом топливный бак соединен топливопроводом, в котором установлен топливный насос с приводом насоса, соединенным с контроллером управления и с камерой сгорания, а система управления содержит бортовой компьютер, соединенный с контроллером управления.

2. Авиационная бомба по п.1, отличающаяся тем, что она снабжена регуляторами, соединенными с контроллером управления.

3. Авиационная бомба по п.1 или 2, отличающаяся тем, что привод насоса соединен с контроллером управления.

4. Авиационная бомба по п.1 или 2, отличающаяся тем, что она снабжена приемно-передающим устройством с антенной, подключенным к бортовому компьютеру.

5. Авиационная бомба по п.1 или 2, отличающаяся тем, что она снабжена приемником системы глобального позиционирования, подключенным к антенне и бортовому компьютеру.

6. Авиационная бомба по п.1 или 2, отличающаяся тем, что она снабжена контроллером взрывателя, подключенным к бортовому компьютеру и взрывному устройству.



 

Похожие патенты:

Изобретение относится к боеприпасам, используемым для бомбардировки наземных, надводных и подводных целей. .

Изобретение относится к авиационной технике и может быть использовано для доставки на землю боевой нагрузки круглосуточно и при любой погоде. .

Изобретение относится к боевой технике и предназначено для бомбардировки наземных, надводных и подводных целей. .

Изобретение относится к авиационной технике, в частности к самонаводящимся авиабомбам. .

Изобретение относится к авиационной технике, в частности к самонаводящимся авиабомбам, в авиационной бомбе применена антенна со следящим приводом для обеспечения оптимального режима работы аппаратуры спутниковой навигации со следящей антенной, диаграмма направленности которой ориентирована «в зенит» при всех траекторных эволюциях авиабомбы, когда угол тангажа изменяется от 0° до минус 90°.

Изобретение относится к противолодочным авиабомбам. .

Изобретение относится к осколочно-фугасным авиабомбам. .

Изобретение относится к бомбам и разовым бомбовым кассетам. .

Изобретение относится к области боеприпасов. .

Изобретение относится к боеприпасам для поражения легкобронированной техники, складов горюче-смазочных материалов, фортификационных сооружений военно-промышленных объектов и коммуникаций и т.д

Изобретение относится к двухканальным пассивным устройствам обнаружения наземных объектов по их инфракрасному излучению сканирующих координаторов цели самоприцеливающихся боеприпасов

Изобретение относится к авиационным боеприпасам и может быть использовано для доставки на землю боевой нагрузки проникающего типа с высокой точностью для поражения особо защищенных типовых целей, расположенных в укрытиях скального типа, пещерах, шахтах

Изобретение относится к области военной техники, а именно к авиационным боеприпасам, преимущественно к авиационным бомбам и разовым бомбовым кассетам

Изобретение относится к боеприпасам с осевым и круговым полями поражения

Изобретение относится к авиационным боеприпасам

Изобретение относится к боеприпасам для поражения легкоуязвимой техники, военно-промышленных объектов и т.д

Изобретение относится к области вооружения, а именно к осветительным авиационным бомбам, предназначенным для освещения местности с целью обеспечения визуальной воздушной разведки и прицельного бомбометания в ночных условиях

Изобретение относится к авиационным бомбовым средствам поражения, в частности к осколочно-фугасным авиабомбам

Изобретение относится к боеприпасам, к авиационным бомбам, а именно к конструкциям управляемых авиационных бомб, снабженных двигателем, предназначенным для увеличения дальности их планирования
Наверх