Способ получения сульфоксидов каталитическим окислением тиоэфиров

Изобретение относится к области органической химии, а именно к способу получения сульфоксидов каталитическим окисления тиоэфиров в присутствии пероксида водорода, отличающийся тем, что в качестве катализатора используют соединения цинка, такие как соли цинка Zn(NO3)2·6Н2O или Zn(СН3СОО)2·2Н2O, комплексное соединение цинка Zn(salen), координационные полимеры на основе комплексных соединений цинка, такие как гомохиральные микропористые координационные полимеры состава [Zn2BDC·(L-Lac)·DMF]·(DMF)x, где BDC - дианион терефталевой кислоты, L-Lac-дианион молочной кислоты, DMF-диметилформамид;

[Zn2camph2bipy]·3DMF·H2O, где H2camph - (+)-камфорная кислота, bipy - 4,4'-бипиридил; [Zn2(bpdc)(R-man)(dmf)]·4DMF·H2O, где H2bpdc - 4,4'-бифенилдикарбоновая кислота, R-man - R-миндальная кислота; [Zn2camph2bpe]·5DMF·H2O, где bpe-транс-бис(4-пиридил)этилен. Технический результат - разработан способ получения сульфоксидов с высокой конверсией и селективностью. Полученные сульфоксиды широко применяются в синтезе органических соединений, в том числе биологически активных. 4 табл.

 

Изобретение относится к области органической химии, а именно к получению сульфоксидов, которые широко применяются в синтезе органических соединений, в том числе биологически активных соединений /Прилежаева Е.Н. Сульфоны и сульфоксиды в полном синтезе биологически активных природных соединений. // Успехи химии, 2000, Т.69, с.403-446/.

Основным подходом к получению сульфоксидов является окисление сульфидов (тиоэфиров) в мягких условиях, обычно при низких температурах, строго дозируя используемый окислитель и подбирая оптимальный растворитель.

Используются H2O2 в различных средах и с различными каталитическими добавками, органические пероксикислоты, гидропероксиды, различные типы галогенсодержащих окислителей, в том числе свободные галогены, азотная кислота и другие азотсодержащие окислители, свободный кислород и другие более сложные реагенты /Прилежаева Е.Н. Химия сульфоксидов и сульфонов //Получение и свойства органических соединений серы, Л.И.Беленький, ред., Москва, Химия, 1998/. Большинство процессов имеют ряд недостатков, таких как (1) дороговизна (и непригодность для промышленного применения), (2) недостаточная экологическая безопасность, (3) невысокая селективность: на практике зачастую сложно остановить окисление на первой стадии, и большинство каталитических способов окисления приводят к образованию примесей сульфона в продуктах реакции. Поэтому поиск новых высокоселективных каталитических систем на основе доступных незагрязняющих окружающую среду металлов (желательно биоэлементов, таких как Zn, Fe) и дешевых нетоксичных окислителей (например, пероксида водорода) является важной и актуальной задачей.

В данной работе предлагается новый способ получения сульфоксидов, основанный на процессе селективного окисления сульфидов пероксидом водорода, катализируемом соединениями цинка.

Предложен способ окисления тиоэфиров в сульфоксиды пероксидом водорода (либо его аддуктом с карбамидом H2O2·(NH2)2CO, далее обозначенным UHP), в котором в качестве катализатора используют соли цинка, например Zn(NO3)2·6H2O и Zn(СН3СОО)2·2H2O, или комплексные соединения цинка, например, N,N'-бис(3,5-дитретбутилсалицилиден)-1,2-циклогександиамин цинк(II) (Zn(salen)), или координационные полимеры на основе комплексов цинка, например, гомохиральные микропористые координационные полимеры состава: [Zn2BDC(L-Lac)·DMF]·(DMF)x (где BDC - дианион терефталевой кислоты, Z-Lac-дианион молочной кислоты, DMF-диметилформамид, х=0÷1), [Zn2camph2bipy]·3DMF·H2O (где H2camph - (+)-камфорная кислота, bipy - 4,4'-бипиридил), [Zn2(bpdc)(R-man)(dmf)]·4DMF·H2O (где H2bpdc - 4,4'-бифенилдикар6оновая кислота, R-man - R-миндальная кислота), [Zn2camph2bpe]·5DMF·H2O (где bpe-транс-бис(4-пиридил)этилен).

Несмотря на значительное число способов получения сульфоксидов /Прилежаева Е.Н. Химия сульфоксидов и сульфонов // Получение и свойства органических соединений серы, Л.И.Беленький, ред., Москва, Химия, 1998/, в литературе до сих пор не было описано примеров окисления сульфидов (тиоэфиров) в сульфоксиды, катализируемых соединениями цинка. Наши исследования показали, что соли цинка способны катализировать селективное окисление тиоэфиров до сульфоксидов пероксидом водорода. Так, при использовании в качестве катализатора Zn(NO3)2·6H2O окисление алкиларилсульфидов пероксидом водорода происходило с конверсией и селективностью до 100% (таблица 1). Это гомогенный процесс; для растворения Zn(NO3)2·6H2O и пероксида водорода необходимо использовать полярные растворители. Количественное превращение может достигаться при использовании не более 10 моль.% катализатора; оптимальное соотношение окислитель:субстрат равняется двум. Обнаружено также, что другие соли цинка, например

Zn(CH3COO)2·2H2O также проявляют ненулевую каталитическую активность в селективном окислении тиоэфиров в сульфоксиды пероксидом водорода. Конверсия исходного сульфида достигала 11% при селективности 100% при проведении реакции в течение 16 часов (таблица 1 эксперимент 15).

Подобные каталитические свойства характерны не только для солей цинка, но и для комплексных соединений цинка(II). Так, комплекс N,N'-бис(3,5-дитретбутилсалицилиден)-1,2-циклогександиамин цинк(II) (далее обозначенный Zn(salen)) также способен катализировать окисление тиоэфиров в сульфоксиды пероксидом водорода (таблица 2).

Кроме того, показано, что микропористый координационный полимер [Zn2BDC·(L-Lac)·DMF]·(DMF)x(1·(DMF)x, x=0÷1) /Dybtsev D.N., Nuzhdin A.L., Chun H., Bryliakov K.P., Taisi E.P., Fedin V.P., Kim K. A Homochiral Metal-Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity // Angew. Chem. Int. Ed., 2006, v.45, p.916-920/ катализирует селективное гетерогенное окисление тиоэфиров до сульфоксидов дешевым и экологически безопасным окислителем - пероксидом водорода. Результаты гетерогенного окисления сульфидов, катализируемого [Zn2BDC·(L-Lac)·DMF]·(DMF)x(x=0÷1), представлены в таблице 3. В экспериментах по каталитическому окислению тиоэфиров, имеющих небольшие заместители (PhSMe, p-BrPhSMe) с 1·(DMF)x (x=1; ≈0.4) наблюдаются высокие конверсии и высокая селективность окисления после 16 ч каталитической реакции, тогда как тиоэфиры с объемными заместителями (эксперимент №3) окисляются с низкой конверсией. Размерная селективность в каталитических реакциях объясняется тем, что реакция главным образом происходит внутри микропор каркаса 1·(DMF)x. Поскольку PhCH2SPh в силу больших размеров не может проникать в поры 1·(DMF)x, его окисление может происходить только на поверхности полимера, что приводит к чрезвычайно низким величинам конверсии. Раствор, полученный перемешиванием 1·(DMF)0.4 в 2 мл CH2Cl2 в течение 12 ч с последующим отделением твердой фазы с помощью фильтрования и центрифугирования, не проявляет каталитической активности в окислении тиоэфиров. Таким образом, при перемешивании не происходит вымывания активных центров, что также является подтверждением гетерогенного характера каталитической реакции. Каждая формульная единица [Zn2] способна выполнять не менее 30 каталитических циклов. Полимер 1·(DMF)x, из которого практически полностью удален DMF (х=0), демонстрирует низкую конверсию в окислении сульфидов. Вероятно, это связано с частичным разрушением каркаса и схлопыванием пор при удалении значительного количества диметилформамида. Несмотря на то, что полимер 1·(DMF)x обладает свойством гомохиральности (т.к. при его синтезе была использована оптически чистая L-молочная кислота), в результате окисления получается рацемическая смесь сульфоксидов. В случае необходимости рацемическая смесь может быть разделена на чистые энантиомеры любым из известных способов (кристаллизацией, разделением через диастереомеры либо с помощью энантиоселективной хроматографии).

Было установлено, что не только [Zn2BDC·(L-Lac)·DMF]·(DMF)x проявляет каталитическую активность в реакциях селективного окисления тиоэфиров в сульфоксиды. Другие координационные полимеры на основе комплексных соединений цинка, например [Zn2camph2bipy]·3DMF·H2O, [Zn2camph2bpe]·5DMF·H2O и [Zn2(bpdc)(R-man)(dmf)]·4DMF·H2O, также проявляют каталитическую активность (см. таблицу 4). Следует отметить, что вышеперечисленные пористые координационные полимеры - первые представители класса координационных полимеров, демонстрирующие каталитическую активность и высокую селективность в реакциях сульфоксидирования.

Таким образом, установлено, что соединения цинка способны катализировать окисление тиоэфиров пероксидом водорода с конверсией и селективностью до 100%. В реакциях окисления каталитическую активность проявляют как соли, так и координационные соединения цинка.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Получение рацемических сульфоксидов окислением соответствующих тиоэфиров пероксидом водорода с Zn(NO3)2·6H2O либо Zn(СН3СОО)2·2H2O в качестве катализатора

Сульфид (тиоэфир) (0.15 ммоль) растворяют в 1.5 мл полярного растворителя (CH3CN, MeOH либо H2O), добавляют катализатор (10-20 мол. %) и H2O2 (0.3 ммоль) и перемешивают в течение 3-24 ч при комнатной температуре. По окончании реакции удаляют растворитель. Продукты реакции выделяют с помощью колоночной хроматографии (SiO2, элюент: гексан/этилацетат) и анализируют с помощью спектроскопии 1Н ЯМР в CCl4 или CDCl3.

В таблице 1 приведены результаты экспериментов по получению рацемического сульфоксидов окислением соответствующих сульфидов пероксидом водорода с применением соли цинка Zn(NO3)2·6H2O и Zn(СН3СОО)2·2H2O в качестве катализатора.

Пример 2.

Получение рацемических сульфоксидов окислением соответствующих тиоэфиров пероксидом водорода с Zn(salen) в качестве катализатора

Сульфид (тиоэфир) (0.1 ммоль) растворяют в 1.5 мл полярного растворителя (CH3CN либо CH3CN/CH2Cl2), добавляют катализатор (5-8 мол. %) и H2O2 (0.11 ммоль) и перемешивают в течение 3-19 ч при Т=25°С. По окончании реакции удаляют растворитель. Продукты реакции выделяют с помощью колоночной хроматографии (SiO2, элюент: гексан/этилацетат) и анализируют с помощью спектроскопии 1Н ЯМР в CCl4.

В таблице 2 приведены результаты экспериментов по получению рацемического сульфоксида окислением соответствующего сульфида пероксидом водорода с применением комплекса цинка Zn(salen) в качестве катализатора.

Пример 3.

Получение рацемических сульфоксидов окислением соответствующих тиоэфиров (сульфидов) пероксидом водорода с [Zn2·BDC·(L-Lac)·DMF]·(DMF)x в качестве катализатора

Смесь сульфида (0.1 ммоль, 1 экв), 1·(DMF)x ([Zn2·BDC·(L-Lac)·DMF]) и окислителя

H2O2 (в виде 90% или 30% водного раствора) либо аддукта H2O2 с мочевиной

H2O2·(NH2)2CO (UHP) растворяют в CH2Cl2 или CH3CN (либо их смеси различного состава). Смесь, общий объем которой был 2 мл, перемешивают 16 ч при комнатной температуре. Полимер отфильтровывают, сорбированный сульфоксид экстрагируют метанолом (3×3 мл). Экстракт и фильтрат комбинируют, удаляют растворитель и DMF в вакууме. Оптический выход и соотношение продуктов реакции определяют с помощью спектроскопии 1Н ЯМР с Eu(hfc)3 в CCl4 или COCl3.

В таблице 3 приведены более подробно условия получения рацемических сульфоксидов окислением соответствующих сульфидов пероксидом водорода с применением координационного соединения цинка [Zn2·BDC·(L-Lac)·DMF]·(DMF)x в качестве катализатора.

Пример 4.

Получение рацемических сульфоксидов окислением соответствующих тиоэфиров (сульфидов) пероксидом водорода с [Zn2camph2bipy]·3DMF·H2O, [Zn2camph2bpe]·5DMF·H2O и [Zn2(bpdc)(R-man)(dmf)]·4DMF·H2O в качестве катализатора

Смесь сульфида (0.15 ммоль, 1 экв), соответствующего координационного полимера и окислителя H2O2 (в виде 30% водного раствора) растворяют в CH3CN. Смесь, общий объем которой был 1.5 мл, перемешивают 16 ч при комнатной температуре. Полимер отфильтровывают, сорбированный сульфоксид экстрагируют метанолом (3×3 мл). Экстракт и фильтрат комбинируют, удаляют растворитель и DMF в вакууме. Оптический выход и соотношение продуктов реакции определяют с помощью спектроскопии 1Н ЯМР с Eu(hfc)3 в CCl4 или COCl3.

Результаты каталитических реакций приведены в таблице 4.

Таблица 4
Гетерогенное окисление тиоэфиров (сульфидов), катализируемое координационными полимерами на основе комплексов цинка [Zn2camph2bipy]·3DMF·H2O и [Zn2(bpdc)(R-man)(dmf)]·4DMF·H2O.
Сульфид Координационный полимер Zn:сульфид Конверсия [%][a] Селективность[%][b]
1 PhSMe [Zn2camph2bipy]·3DMF·H2O 1:30 30 97
2 PhSCH2Ph [Zn2camph2bipy]·3DMF·H2O 1:30 17 99
3 PhSMe [Zn2camph2bpe]·5DMF·H2O 1:30 28 96
4 PhSCH2Ph [Zn2(bpdc)(R-man)(dmf)]·4DMF·H2O 1:30 70 99
Условия реакции: сульфид (0.15 ммоль), CH3CN (1.5 мл), в качестве катализатора использовали 10 мг полимера, H2O2 30% (0.30 ммоль), перемешивание при комнатной температуре в течение 16 ч
[a]Конверсия =([RSOR']+[RSO2R']/([RSOR']+[RSO2R']+[RSR']);
[b]Селективность =[RSOR']/([RSOR']+[RSO2R']).

Способ получения сульфоксидов каталитическим окислением тиоэфиров в присутствие пероксида водорода, отличающийся тем, что в качестве катализатора используют соединения цинка, такие как: соли цинка - Zn(NO3)2·6Н2O или
Zn(СН3СОО)2·2Н2O, комплексное соединение цинка - Zn(salen), координационные полимеры на основе комплексных соединения цинка, такие как гомохиральные микропористые координационные полимеры состава: [Zn2BDC·(L-Lac)·DMF]·(DMF)x, где BDC - дианион терефталевой кислоты, L-Lac-дианион молочной кислоты, DMF-диметилформамид; [Zn2camph2bipy]·3DMF·H2O, где H2camph - (+)-камфорная кислота, bipy - 4,4'-бипиридил; [Zn2(bpdc)(R-man)(dmf)]·4DMF·H2O, где H2bpdc - 4,4'-бифенилдикарбоновая кислота, R-man R-миндальная кислота; [Zn2camph2bpe]·5DMF·H2O, где bpe-транс-бис(4-пиридил)этилен.



 

Похожие патенты:

Изобретение относится к новым замещенным феноксиуксусным кислотам (I), в которых: Х представляет собой галоген, циано, нитро или С1-4алкил, который замещен одним или более чем одним атомом галогена; Y выбран из водорода, галогена или C1-С6алкила, Z представляет собой фенил, нафтил или кольцо А, где А представляет собой шестичленное гетероциклическое ароматическое кольцо, содержащее один или два атома азота, или может представлять собой 6,6- или 6,5-конденсированный бицикл, содержащий один атом О, N или S, или может представлять собой 6,5-конденсированный бицикл, содержащий два атома О, причем фенил, нафтил или кольца А все, возможно, замещены одним или более чем одним заместителем, независимо выбранным из галогена, CN, ОН, нитро, COR9, CO2R6, SO2 R9, OR9, SR9, SO2 NR10R11, CONR10R11 , NR10R11, NHSO2R9 , NR9SO2R9, NR6CO 2R6, NR9COR9, NR6CONR4R5, NR6SO 2NR4R5, фенила или C1-6 алкила, причем последняя группа, возможно, замещена одним или более чем одним заместителем, независимо выбранным из галогена; R1 и R2 независимо представляют собой атом водорода или С1-6алкильную группу, R4 и R5 независимо представляют собой водород, С3 -С7циклоалкил или C1-6алкил, R6 представляет собой атом водорода или C1-6алкил; R 8 представляет собой С1-4алкил; R9 представляет собой C1-6алкил, возможно, замещенный одним или более чем одним заместителем, независимо выбранным из галогена или фенила; R10 и R11 независимо представляют собой фенил, 5-членное ароматическое кольцо, содержащее два гетероатома, выбранных из N или S, водород, С3-С7циклоалкил или C1-6алкил, причем последние две группы, возможно, замещены одним или более чем одним заместителем, независимо выбранным из галогена или фенила; или R10 и R11 вместе с атомом азота, к которому они присоединены, могут образовывать 3-8-членное насыщенное гетероциклическое кольцо, возможно, содержащее один атом или более чем один атом, выбранный из О, S(O)n (где n=0, 1 или 2), NR8.

Изобретение относится к способу модулирования CRTh2-рецепторной активности с использованием соединений формулы (I) или их фармацевтически приемлемых солей, где W представляет собой О, S(O)n (где n равен 0, 1 или 2), NR15, CR1OR 2 или CR1R2; X представляет собой водород, галоген или C1-6алкил, который может быть замещен одним или более чем одним атомом галогена; Y представляет собой водород, галоген; Z представляет собой фенил, пиридил, пиримидил или хинолил, возможно замещенный одним или более чем одним заместителем, независимо выбранным из галогена, CN, нитро, SO2R9, SO2NR10R 11, CONR10R11, NHSO2R или C1-3алкила, замещенного одним или более чем одним атомом галогена; R1 и R2 независимо представляют собой атом водород или C1-6алкильную группу; R 9 представляет собойC1-6алкил; R10 и R11 независимо представляют собой водород или C1-6алкил, R15 представляет собой атом водорода или C1-С6-алкил.
Изобретение относится к области органической химии, а именно к получению сульфоксидов, которые широко применяются в синтезе органических соединений, в том числе биологически активных соединений /Прилежаева Е.Н.

Изобретение относится к области органической химии, а именно к получению хиральных сульфоксидов, которые широко применяются в синтезе хиральных органических соединений, в том числе биологически активных соединений.

Изобретение относится к усовершенствованному способу получения ароматических сульфонов. .

Изобретение относится к новым производным бензола или пиридина формулы (I) где R обозначает Н, С1-С7алкил и галоген; R1 обозначает Н или галоген при условии, что в 4-м положении R1 не обозначает бром или иод; R2 обозначает Н или CF3; R3 обозначает Н или С1-С7алкил; R4 обозначает Н, галоген, С1-С7алкил и др.; R5 обозначает Н или С1-С7алкил; Х обозначает -C(O)N(R5)-, -N(R5)-C(O)- или -С(O)O-; Y обозначает -(СН2)n-, -О-, -S-, -SO2-, -C(O)- или N(R5’)-; R5’ обозначает (низш.)алкил; Z обозначает =N-, -CH= или -С(С1)=; n обозначает число от 0 до 4; и их фармацевтически приемлемым солям.
Изобретение относится к способу получения 4,4-дихлордифенилсульфона, который является мономером в производстве полиариленсульфонов - термостойких полимеров конструкционного и электроизоляционного назначения.

Изобретение относится к способу получения 4,4'-дихлордифенилсульфона, являющегося мономером в синтезе термостойких полиариленсульфоновых полимеров. .

Изобретение относится к ортозамещенным соединениям формулы I или их фармацевтически приемлемым солям, которые являются ингибиторами простагландин Н синтазы. .

Изобретение относится к органическим соединениям серы, а точнее к получению хлорированных ароматических сульфоксидов. .

Изобретение относится к способу модулирования CRTh2-рецепторной активности с использованием соединений формулы (I) или их фармацевтически приемлемых солей, где W представляет собой О, S(O)n (где n равен 0, 1 или 2), NR15, CR1OR 2 или CR1R2; X представляет собой водород, галоген или C1-6алкил, который может быть замещен одним или более чем одним атомом галогена; Y представляет собой водород, галоген; Z представляет собой фенил, пиридил, пиримидил или хинолил, возможно замещенный одним или более чем одним заместителем, независимо выбранным из галогена, CN, нитро, SO2R9, SO2NR10R 11, CONR10R11, NHSO2R или C1-3алкила, замещенного одним или более чем одним атомом галогена; R1 и R2 независимо представляют собой атом водород или C1-6алкильную группу; R 9 представляет собойC1-6алкил; R10 и R11 независимо представляют собой водород или C1-6алкил, R15 представляет собой атом водорода или C1-С6-алкил.
Изобретение относится к области органической химии, а именно к получению сульфоксидов, которые широко применяются в синтезе органических соединений, в том числе биологически активных соединений /Прилежаева Е.Н.

Изобретение относится к новым промежуточным продуктам и усовершенствованному способу получения соединения С: Предлагаемый в изобретении способ получения основан на использовании недорогих исходных материалов, позволяет получать промежуточные продукты с высоким выходом и высокой степенью чистоты без необходимости проводить операции по хроматографической очистке и может быть реализован в условиях крупномасштабного промышленного производства.

Изобретение относится к способу окисления сульфидов, содержащихся в нефти, и может быть использовано в нефтехимической и нефтеперерабатывающей промышленности. .

Изобретение относится к способу окисления сульфидов, содержащихся в дизельных фракциях нефти, водным раствором пероксида водорода в присутствии молибденсодержащего катализатора.

Изобретение относится к способам получения нефтяных сульфоксидов, которые находят применение в технологии обогащения редких и благородных металлов, для решения экологических проблем, лечения сельскохозяйственных животных и т.д.
Изобретение относится к способу получения смеси сульфоксидов окислением сульфидов дизельных фракций сернистой и высокосернистой нефти водными растворами гипохлорита натрия или кальция.
Изобретение относится к способу получения смеси сульфоксидов окислением сульфидов дизельных фракций сернистой и высокосернистой нефти. .

Изобретение относится к новым арил-S(O)n-замещенным карбоновые/гидроксамовые кислотам формулы I, где Y означает гидрокси, XONH-, где X означает Н, C1-C6 алкил; R1 означает Н, C1-C6 алкил; R2 означает Н, C1-C6 алкил, C3-C8 циклоалкил, C3-C8 циклоалкил - C2-C8 алкил, тетрагидропиранил, пиперидинил, -NR6R7 где R6 означает Н, C1-C6 алкил, арил; R7 означает Н, C1-C6 алкил, арил, арил - C1-C8 алкил, -SO2NR8R9, арилоксикарбонил, C1-C8 алкоксикарбонил, -C(O)-O-CH2Rd, где Rd означает фенил; или группа NR6R7 означает валинамидо; R8 и R9 независимо означают Н, C1-C6 алкил; или R1 и R2 вместе с атомом углерода, к которому они присоединены образуют C3-C8 циклоалкил или возможно замещенные низшим алкилом пиперидинил или тетрагидропиранил; R3 означает Н, C1-C6 алкил, C3-C8 циклоалкил, C3-C8 циклоалкил-C1-C8 алкил, арил, арил - C1-C8 алкил, пиперидинил, тетрагидропиранил; R4 означает Н, C1-C6 алкил, C3-C8 циклоалкил, C3-C8 циклоалкил-C1-C8 алкил; R2 и R3 вместе представляют C3-C8 циклоалкил, R3 и R4 вместе представляют C3-C8 циклоалкил; R5 означает арил, возможно замещенный.

Изобретение относится к способу получения сульфоксидов, которые могут найти применение в качестве экстрагентов редких и благородных металлов, флотореагентов в металлургии или в качестве биологически активных веществ, перспективных для использования в сельском хозяйстве.
Изобретение относится к области получения термостойких сульфокатионитных катализаторов. .
Наверх