Способ получения селективного покрытия

Изобретение относится к гелиотехнике и может быть использовано в солнечных коллекторах, применяемых для тепло- и хладоснабжения жилых и промышленных зданий и установок. Способ получения селективного покрытия включает оксидирование алюминия и его сплавов в кислом растворе, электролитическое заполнение пор оксида высокодисперсным никелем. Дополнительное заполнение пор осуществляют высокодисперсным серебром, а при оксидировании и электролитическом заполнении пор используют переменный асимметричный ток, в котором средний катодный ток больше анодного и их соотношение соответственно составляет 2,5:1 и 5:1 при напряжении 8-15 В, электролит оксидирования содержит соли металлов Mn, Al, Ni при следующем соотношении компонентов, (г/л):

Серная кислота 180,0-200,0 Глицерин 1,0-3,0 Лимонная кислота 2,0-5,0 Сульфат алюминия 25,0-35,0 Сульфат никеля 25,0-35,0 Перманганат калия 2,0-3,0

Изобретение должно обеспечить упрощение технологии получения селективного покрытия. 2 табл.

 

Изобретение относится к гелиотехнике и может быть использовано в солнечных коллекторах, применяемых для тепло- и хладоснабжения жилых и промышленных зданий и установок. Селективное покрытие предназначено для нанесения на внешнюю поверхность поглощающей панели солнечного коллектора, преобразующего электромагнитное излучение Солнца в тепло.

Для того чтобы обеспечить эффективную работу панели солнечного коллектора относительный интегральный коэффициент поглощения поверхности коллектора в спектре излучения Солнца Ас должен приближаться к 1,0, а относительный интегральный коэффициент собственного излучения Е поверхности коллектора приближаться к нулевой величине. Чем выше значение отношения Ас/Е, тем эффективнее коллектор преобразует электромагнитное излучение Солнца в тепло.

Известен способ получения многослойного селективного покрытия для солнечного коллектора на внутренней поверхности цилиндра из алюминиевой фольги [Пат. RU №2133928 F24J 2/48. Многослойное селективное покрытие для солнечного коллектора и способ его получения. 1999. Ефремов Г.А., Хромушкин А.В., Минасбеков Д.А., Дударев Н.В., Дремлюга А.А., Дьячишин А.С.] путем напыления в вакууме слоя титана и последующего реактивного напыления в вакууме слоя нестехиометрического металлоида титана, получаемого путем реактивного напыления в атмосфере СО2 или N2 при парциальном давлении каждого газа в пределах (2,5-8,0)·10-2 Па, после чего в тлеющем разряде в вакууме в парах органических или элементоорганических соединений при парциальном давлении паров в пределах от 10 до 20 Па осаждают твердый аморфный углеродсодержащий материал.

Селективное покрытие, получаемое этим способом, имеет достаточно низкий коэффициент излучения Е≈0,035, но недостаточно высокий коэффициент поглощения в солнечном спектре Ас=0,94. Кроме того, данный способ получения селективного покрытия технологически весьма трудоемкий.

Наиболее близкими по технологической сущности и достижимому результату к предлагаемому способу являются многослойные селективные покрытия для солнечного коллектора, содержащие 2 слоя, один из которых выполнен в виде пленки оксида алюминия, поры которой заполнены частицами металла, а второй слой выполнен в виде пленки из двуокиси олова и расположен первым по ходу солнечных лучей, причем между двумя этими слоями расположен дополнительный связующий слой в виде гидратированной пленки Аl2О3 [А.с. СССР №668282, МПК F24J 2/48, 1979 в Пат. RU №2044964, МПК6 F24J 2/48. Многослойное селективное покрытие для солнечного коллектора. 1995. Дьячинин А.С., Дремлюга А.А., Саксонский В.А.]. Недостатками этих покрытий, полученных с помощью постоянного электрического тока, является их относительно низкая эффективность. Для покрытий данного типа отношение Ас/Е составляет примерно 4,0-5,0, что обусловлено относительно высоким значением коэффициента Е (при Ас≈0,90, Ас>0,20). К числу недостатков относится и трудоемкость получения селективного покрытия, обусловленная необходимостью нанесения второго слоя для увеличения коэффициента поглощения.

Задачей изобретения является упрощение технологии получения селективного покрытия.

Задача достигается тем, что способ получения селективного покрытия включает оксидирование алюминия и его сплавов в кислом растворе, электролитическое заполнение пор оксида высокодисперсным никелем, дополнительного заполнения пор высокодисперсным серебром, а при оксидировании и электролитическом заполнении пор используют переменный асимметричный ток, в котором средний катодный ток больше анодного и их соотношение составляет 2,5:1 и 5:1 при напряжении 8-15 В, электролит оксидирования содержит соли металлов Mn, Al, Ni при следующем соотношении компонентов, (г/л):

Серная кислота 180,0-200,0
Глицерин 1,0-3,0
Лимонная кислота 2,0-5,0
Сульфат алюминия 25,0-35,0
Сульфат никеля 25,0-35,0
Перманганат калия 2,0-3,0

Применение переменного асимметричного тока позволяет получить однослойное селективное покрытие, обладающее высокой поглощающей способностью.

Новизной в предлагаемом изобретении наряду с использованием переменного асимметричного тока является и то, что с целью усиления поглощающей способности полученного электрохимически селективного покрытия дополнительно доосаждали, серебро в поры покрытия путем его погружения на некоторое время (1-3 мин) в разбавленный раствор нитрата серебра.

Доосаждение серебра усиливает эффект чернения. Осаждение серебра происходит как за счет реакции контактного обмена с частицами металла, ранее осажденного в порах оксида, так и за счет восстановления его самой оксидной нестехиометрической пленкой оксида алюминия, имеющей недостаток по кислороду. Нестехиометрия оксидной пленки алюминия обусловлена тем, что ее формирование происходит за счет применения переменного асимметричного тока, в котором средний катодный ток больше среднего анодного.

Оксидирование проводили в растворе, содержащем серную и лимонную кислоты, глицерин, сульфат алюминия, перманганат калия и сульфат никеля, при комнатной температуре и соотношении плотностей катодного и анодного тока 2,5:1, напряжении 8-15 В в течение 30 мин. Ионы никеля и марганца вводили в электролит для формирования дефектной пленки алюминия, а наличие в электролите ионов алюминия ускоряет образование оксидной пленки.

Заполнение пор оксида высокодисперсным металлом (никелем) проводили электрохимически с использованием переменного асимметричного тока из раствора, содержащего сульфат никеля (NiSO4·7Н2О), сульфат магния (MgSO4·7Н2O), сульфат аммония ((NHO2·SO4), борную кислоту (Н3ВO3) при соотношении компонентов один к одному и плотностей катодного (iк) и анодного (ia) токов равным 5:1, напряжении 8-15 В, времени нанесения 20 мин.

По окончании процесса чернения (после заполнения пор оксида высокодисперсным металлом и выдержки в растворе серебра) для уплотнения оксида и упрочнения окраски изделия кипятили в течение 20 мин в деминерализованной воде.

Способ позволяет получать равномерное абсолютно черное покрытие с высокой адгезией к подложке и уменьшить его стоимость за счет снижения энергоемкости процесса.

Коэффициент излучения покрытия Е при температуре 100°С равен 0,03, а интегральный коэффициент поглощения покрытия, описанного типа в видимой части спектра, Ас=0,98. Эти данные получены на основании определения отражательной способности (R, %) с помощью USB-VIS-NIR-2000-спектрометра. Таким образом, эффективность преобразования солнечной энергии предлагаемым покрытием гораздо выше по сравнению с известными покрытиями.

Пример. Селективное поглощающее покрытие наносили на внутреннюю и внешнюю поверхность (одновременно) цилиндрических трубок площадью 50×102 мм2 и пластин размером 60×50×2 мм, изготовленных из сплавов алюминия марки AD 31. Перед оксидированием поверхность изделий готовили по стандартной в гальванотехнике методике. После чего изделия оксидировали в стеклянной ячейке объемом 500 мл; в качестве противоэлектродов использовали свинец или алюминий. Противоэлектроды в ванне окрашивания - никель. Оксидирование и окрашивание проводили при перемешивании раствора (воздушное или механическое). Все используемые растворы электролитов готовили на деминерализованной воде из реактивов марки «ч.д.а» или «х.ч.» путем последовательного растворения компонентов. Оксидирование и заполнение пор оксида алюминия осуществляли из растворов состава таблицы 1.

Содержание компонентов в селективном покрытии, определенное с помощью сканирующего микроскопа QUANTA 200 при ускоряющем напряжении 30 кВ (табл.2), подтверждает факт заполнения пор оксида алюминия высокодисперсным никелем и доосаждение серебра в порах оксида при погружении покрытия в раствор нитрата серебра.

Таблица 2
Данные рентгеноспектрального микроанализа с помощью электронного микроскопа
Элемент Весовые, % Атомные, %
кислород 47,97 61,3
алюминий 45,96 34,82
никель 10,29 04,06
серебро 01,84 00,35
сера 06,07 03,87

Отражательная способность покрытий (R, %) составила 0,98. Толщина покрытия равна 10 мкм, размер частиц покрытия лежит в интервале от 5 до 111,0 нм, а пор от 0,5 до 2 мкм.

Таким образом, полученное покрытие имеет оптимальные оптические свойства в солнечном спектре и оптимальную величину слоя, составляющего покрытие.

Применение предлагаемого селективного покрытия позволит создавать солнечные коллекторы с повышенными эффективностью и КПД преобразования солнечной энергии в тепловую энергию.

Способ получения селективного покрытия включает оксидирование алюминия и его сплавов в кислом растворе, электролитическое заполнение пор оксида высокодисперсным никелем, отличающийся тем, что дополнительное заполнение пор осуществляют высокодисперсным серебром, а при оксидировании и электролитическом заполнении пор используют переменный асимметричный ток, в котором средний катодный ток больше анодного и их соотношение составляет 2,5:1 и 5:1 при напряжении 8-15 В, электролит оксидирования содержит соли металлов Mn, Al, Ni при следующем соотношении компонентов, г/л:

Серная кислота 180,0-200,0
Глицерин 1,0-3,0
Лимонная кислота 2,0-5,0
Сульфат алюминия 25,0-35,0
Сульфат никеля 25,0-35,0
Перманганат калия 2,0-3,0



 

Похожие патенты:

Изобретение относится к смесям для аккумулирования тепловой энергии и к преобразователю солнечной энергии. .

Изобретение относится к теплотехнике и может быть использовано в нагревателях различных типов, преобразующих лучистую энергию, например лучистую энергию Солнца, в тепловую энергию.

Изобретение относится к теплотехнике и может быть использовано для отопления помещений, нагревания жидкостей, например воды в бассейне, и для аккумуляции тепла в заполненных теплоносителем емкостях.

Изобретение относится к энергетической гелиоустановке, в которой падающее солнечное излучение концентрируют зеркалом Френеля, образованным полем (6) концентрирующих зеркал (7), и концентрированное излучение фокусируют в приемнике солнечного излучения с помощью добавочного диэлектрического зеркала (12 ), расположенного на соответствующем уровне над солнечным коллектором, предназначенного для отражения концентрированного солнечного излучения в коллектор, причем в промежутке между диэлектрическим зеркалом (12) и приемником может быть множество неформирующих изображения вспомогательных концентраторов, расположенных в концентрических зонах.

Изобретение относится к технологии преобразования солнечной энергии в тепловую и может быть использовано при изготовлении гелиотермических преобразователей. .

Изобретение относится к области использования солнечной энергии для обеспечения энергетических нужд в быту и на производстве, а именно для обеспечения потребностей в тепловой энергии, и может быть использовано при изготовлении высокотемпературных гелиотермических установок.

Изобретение относится к гелиотехнике, в частности к солнечным коллекторам, в которых теплоприемный элемент абсорбер выполнен из композиционных материалов. .
Изобретение относится к гелиотехнике и может быть использовано в солнечных коллекторах, применяемых для тепло- и хладоснабжения жилых и промышленных зданий и установок

Изобретение относится к гелиотехнике и может быть использовано в солнечных коллекторах, применяемых для теплоснабжения и хладоснабжения жилых и промышленных зданий и установок

Изобретение относится к способу изготовления абсорбционной панели для солнечных коллекторов из металлической ленты, в частности из алюминия или алюминиевого сплава

Заявлен способ изготовления поглощающего покрытия для солнечного нагрева, наносимого на металлическую подложку, в частности наносимого на тонкий алюминиевый лист, и покрытие, изготовленное таким способом. Покрытие представляет собой покрытие золь-гель типа на основе золя оксида металла, в котором частицы пигмента тщательно перемешивают с золем, с последующим нанесением лака смешанного золя на подложку, затем высушивают при температуре 180-600°С на воздухе при повышенной температуре для получения золь-гель покрытия, в котором покрытие представляет собой покрытие золь-гель типа на основе золя оксида металла с частицами пигмента черного феррита марганца (Mn3Cu2FeO8), которые тщательно перемешаны с золем до нанесения на подложку. Изобретение предлагает способ и покрытие, в котором требования по поглощению солнечной энергии, термоэмиссионной способности, термостабильности и стойкости реализованы в приемлемой степени. 2 н. и 12 з.п. ф-лы, 3 ил., 2 табл.
Изобретение относится к органическим теплоносителям, а именно к жидким пожаробезопасным теплоносителям на водно-гликолиевой основе, используемым для преобразования электромагнитного излучения Солнца в тепловую энергию для нагрева теплоносителя. Теплоноситель седиментационно устойчивый для солнечного коллектора включает 50 мас. % 1,2-пропандиола, 0,5 мас. % нанодисперсного углерода или 0,1 мас. % нигрозина и остальное - воду. Предложенный теплоноситель обладает повышенной светоабсорбирующей способностью, составляющей 99,8% при наличии нанодисперсного углерода и 99,5% при наличии в нем нигрозина, что обеспечивает увеличение скорости нагрева теплоносителя в 5-6 раз и увеличение эффективности работы солнечного коллектора с жидким теплоносителем. 2 пр.

Изобретение относится к теплоэнергетике и гелиотехнике и может использоваться как элемент солнечной энергетической установки, преобразующей и сохраняющей энергию излучения солнца в виде тепловой энергии для горячего водоснабжения, отопления и кондиционирования воздуха в зданиях и сооружениях. Трубчатая панель солнечного коллектора включает герметичный корпус с теплообменным каналом, ряд прозрачных коаксиальных труб с абсорбирующим покрытием и пробками, полые тепловые стержни с испарителями, конденсаторами и теплопоглощающими пластинами, которые термически контактируют с тепловыми стержнями через слой теплопроводящего материала. Конструктивные особенности трубчатой панели заключаются в том, что теплопроводящий слой и абсорбирующее покрытие выполнены в виде объемного абсорбера из теплоаккумулирующего материала с фазовым переходом и свойствами полупрозрачного черного тела, который заполняет все свободное пространство внутренних труб между тепловыми стержнями и теплопоглощающими пластинами, свернутыми в цилиндрическую пружину, у которой каждый виток выполнен в виде пояса Мебиуса, разрезанного и сдвинутого вдоль оси на ширину образующей его пластины для плавного перехода в соседний виток цилиндрической пружины. Изобретение должно повысить эффективность и надежность коллектора, исключить механические приводы, обеспечить совмещение функций абсорбера и теплоаккумулятора для равномерности нагрева теплоносителя в сложных условиях эксплуатации. 3 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к металлическому устройству для аккумулирования тепловой энергии, используемому для аккумулирования тепловой энергии от внешнего источника, и в частности целью настоящего изобретения является предложение металлического устройства для аккумулирования тепловой энергии, которое аккумулирует, при высокой температуре, высокотемпературную солнечную энергию, собранную с помощью концентратора солнечной энергии и других устройств, и обеспечивает постепенное выделение тепловой энергии, благодаря чему значительно увеличивается аккумуляция солнечной энергии, которая является энергией природного источника. В настоящем изобретении предусмотрена двойная изоляция металлической среды аккумулирования тепловой энергии, которая аккумулирует солнечную энергию при высокой температуре (от 100 до 1300 градусов), и такое расположение теплообменника, когда он находится вблизи металлической среды аккумулирования тепловой энергии, так чтобы рабочая жидкость могла нагреваться на протяжении длительного периода времени, при этом для обеспечения двойной изоляции металлической среды аккумулирования тепловой энергии камера ввода среды имеет двойную компоновку из изолирующей внутренней стенки, изолирующей наружной стенки и изолирующего пола, соответственно, на внутренней стороне, наружной стороне и со стороны пола металлической среды аккумулирования тепловой энергии; конструкция наружной стенки, изготовленная из бетона, содержит пол, центральный столб, основу наружной стенки и верхнее покрытие; зеркало для отражения инфракрасных лучей расположено под верхним покрытием; и емкость для аккумулирования тепловой энергии является вакуумированной, вследствие чего блокируются процесс конвекции воздуха и передача тепла воздухом, благодаря чему потери тепла сводятся к минимуму. 5 з.п. ф-лы, 7 ил.

Изобретение относится к гелиоэнергетике и может быть использовано в гелиосистемах отопления и горячего водоснабжения, использующих плоские солнечные коллекторы. Изобретение относится к конструкции абсорбера солнечного коллектора. Солнечный абсорбер содержит магистральные жидкостные трубы, концы которых соединены с коллекторными трубами, абсорбционный лист. Каждая жидкостная труба и абсорбционные листы выполнены из одного теплопроводящего материала. Каждая магистральная жидкостная труба выполнена в виде профиля, имеющего боковые бортики вдоль всей длины, высота профиля меньше 1/3 ширины торцевой части профиля. Внутри профиль разделен перегородками, причем на боковые бортики профиля уложены и приварены сварным соединением по всей длине абсорбционные листы. Изобретение должно обеспечить высокую эффективность теплопередачи, снизить теплопотери в окружающую среду. 2 з.п. ф-лы, 3 ил.
Наверх