Способ комплексной переработки корня одуванчика

Изобретение относится к технологии комплексной переработки овощей. Подготавливают, измельчают и экстрагируют корень одуванчика наноструктурированной водой при соотношении фаз 1:(3-8) в роторно-кавитационном экстракторе при индексе кавитации 0,05-0,1 и температуре 75-80°С в течение 10-15 минут. Разделяют фазы и очищают экстракт тангенциальной микрофильтрацией на мембранах с размером пор 0,14-0,2 мкм с получением инулинсодержащего раствора. Повторно экстрагируют шрот наноструктурированной водой при соотношении фаз 1:(3-5) в роторно-кавитационном экстракторе при индексе кавитации 2,1-2,5 в течение 1,5-5 минут. Разделяют фазы, очищают повторный экстракт тангенциальной микрофильтрацией на мембранах с размером пор около 1,4 мкм. Концентрируют его на вакуум-выпарной пленочной установке и сушат на ультразвуковой распылительной установке с получением пектина. Отжимают полученный после повторного экстрагирования шрот и сушат его с получением пищевых волокон. Изобретение позволяет осуществить комплексную переработку корня одуванчика при высокой эффективности разделения его компонентов и высокой чистоте целевых продуктов. 2 з.п. ф-лы.

 

Изобретение относится к технологии комплексной переработки овощей.

Известно использование корня одуванчика в сушеном, обжаренном и размолотом вине для производства кофейных напитков (http: // www.dachnikam.ru / zakroma / zdorov/zdorov06.php).

При заваривании полученных напитков образуется большое количество отходов в виде осадка.

Сведения об использовании корня одуванчика для комплексной промышленной переработки из уровня техники не известны.

Техническим результатом изобретения является обеспечение комплексной переработки корня одуванчика с получением в качестве целевых продуктов пищевых волокон, пектина и инулинсодержащего раствора, или инулина, или сиропа.

Этот результат достигается тем, что способ комплексной переработки корня одуванчика предусматривает его подготовку, измельчение, экстрагирование наноструктурированной водой при соотношении фаз 1:(3-8) в роторно-кавитационном экстракторе при индексе кавитации 0,05-0,1 и температуре 75-80°С в течение 10-15 минут, разделение фаз и очистку экстракта тангенциальной микрофильтрацией на мембранах с размером пор 0,14-0,2 мкм с получением инулинсодержащего раствора, повторное экстрагирование шрота наноструктурированной водой при соотношении фаз 1:(3-5) в роторно-кавитационном экстракторе при индексе кавитации 2,1-2,5 в течение 1,5-5 минут и разделение фаз, очистку полученного после повторного экстрагирования экстракта тангенциальной микрофильтрацией на мембранах с размером пор около 1,4 мкм, его концентрирование на вакуум-выпарной пленочной установке и сушку на ультразвуковой распылительной установке с получением пектина, отжим полученного после повторного экстрагирования шрота и его сушку с получением пищевых волокон.

Предпочтительными вариантами воплощения настоящего изобретения предусмотрено концентрирование инулинсодержащего раствора на вакуум-выпарной пленочной установке и его сушка на ультразвуковой распылительной установке с получением инулина или его гидролиз лимонной кислотой при ее концентрации 3-5%, температуре 105-120°С и давлении 0,41-0,45 МПа и концентрирование на вакуум-выпарной пленочной установке при температуре 65-70°С с получением глюкозно-фруктозного сиропа.

Способ реализуется следующим образом.

Корень одуванчика подготавливают по традиционной технологии и измельчают. Воду подвергают наноструктурированию путем ультразвуковой обработки по известной технологии (http://www.nii-germes.ru/Nano Technology.html).

Измельченный корень одуванчика смешивают с наноструктурированной водой в соотношении 1:(3-8) и экстрагируют в роторно-кавитационном экстракторе при индексе кавитации 0,05-0,1 и температуре 75-80°С в течение 10-15 минут. После завершения экстрагирования фазы разделяют по любой известной технологии.

Отделенный экстракт подвергают тангенциальной микрофильтрации на мембранах с размером пор 0,14-0,2 мкм с получением инулинсодержащего раствора, который может быть отобран в качестве целевого продукта или подвергнут дальнейшей обработке в соответствии с предпочтительными вариантами воплощения настоящего изобретения.

По первому из них инулинсодержащий раствор концентрируют на вакуум-выпарной пленочной установке и сушат на ультразвуковой распылительной установке с получением инулина.

Параметры концентрирования зависят от конструкции ультразвуковой распылительной установки, а именно от конструктивного выполнения узла ультразвукового распыления, который может быть выполнен в виде ультразвуковой форсунки или механического распылителя с различными средствами подачи распыляемой среды. Поэтому концентрирование осуществляют до достижения содержания сухих веществ, при котором вязкость концентрата не препятствует его распылению в используемой для сушки установке.

В соответствии с другим предпочтительным вариантом воплощения настоящего изобретения инулинсодержащий раствор гидролизуют лимонной кислотой при концентрации последней 3-5%, температуре 105-120°С и давлении 0,41-0,45 МПа и концентрируют на вакуум-выпарной пленочной установке при температуре 65-70°С с получением глюкозно-фруктозного сиропа. Концентрирование осуществляют при указанной температуре, поскольку при температуре выше 70°С в кислой среде происходит лавинообразное окисление фруктозы до оксиметилфурфурола, и до достижения содержания сухих веществ не более 72% в зависимости от его назначения.

Оставшийся шрот смешивают с наноструктурированной водой в соотношении 1:(3-5) и экстрагируют в роторно-кавитационном экстракторе при индексе кавитации 2,1-2,5 в течение 1,5-5 минут и разделяют фазы по любой известной технологии.

Полученный после повторного экстрагирования экстракт подвергают тангенциальной микрофильтрации на мембранах с размером пор около 1,4 мкм, концентрируют на вакуум-выпарной пленочной установке и сушат на ультразвуковой распылительной установке с получением пектина.

Параметры концентрирования выбирают в зависимости от конструкции узла ультразвукового распыления сушильной установки, как это описано выше.

Полученный после повторного экстрагирования шрот отжимают и сушат по любой известной технологии с получением пищевых волокон.

За счет использования наноструктурированной воды и подбора индексов кавитации на соответствующих стадиях экстрагирования достигается его высокая селективность. Выход инулина составляет 95-98% от теоретически возможного. При этом содержание инулина в инулинсодержащем растворе или порошке составляет не менее 90% от массы сухих веществ и имеет степень полимеризации 10-12. Это обеспечивает возможность использования инулинсодержащего раствора или порошка как в пищевых, так и в медицинских целях.

Полученный пектин содержит не менее 65% галактуроновой кислоты, а получаемое из него желе имеет прочность около 200° SAG, что соответствует показателям коммерчески доступных образцов цитрусового пектина.

Полученные по описанной технологии пищевые волокна имеют влагоудержи-вающую способность 23,4 г/г, катионообменную способность 2,4 мг-экв./г и сорбцию холевой кислоты 34%, что соответствует показателям лучших коммерчески доступных образцов зерновых пищевых волокон.

Таким образом, предлагаемый способ позволяет осуществить комплексную переработку корня одуванчика с получением в качестве целевых продуктов пищевых волокон, пектина и инулинсодержащего раствора, или инулина, или сиропа при высокой степени чистоты перечисленных продуктов.

1. Способ комплексной переработки корня одуванчика, предусматривающий его подготовку, измельчение, экстрагирование наноструктурированной водой при соотношении фаз 1:(3-8) в роторно-кавитационном экстракторе при индексе кавитации 0,05-0,1 и температуре 75-80°С в течение 10-15 мин, разделение фаз и очистку экстракта тангенциальной микрофильтрацией на мембранах с размером пор 0,14-0,2 мкм с получением инулинсодержащего раствора, повторное экстрагирование шрота наноструктурированной водой при соотношении фаз 1:(3-5) в роторно-кавитационном экстракторе при индексе кавитации 2,1-2,5 в течение 1,5-5 мин и разделение фаз, очистку полученного после повторного экстрагирования экстракта тангенциальной микрофильтрацией на мембранах с размером пор около 1,4 мкм, его концентрирование на вакуум-выпарной пленочной установке и сушку на ультразвуковой распылительной установке с получением пектина, отжим полученного после повторного экстрагирования шрота и его сушку с получением пищевых волокон.

2. Способ по п.1, отличающийся тем, что инулинсодержащий раствор концентрируют на вакуум-выпарной пленочной установке до достижения содержания сухих веществ, при котором вязкость концентрата не препятствует его распылению, и сушат на ультразвуковой распылительной установке с получением инулина.

3. Способ по п.1, отличающийся тем, что инулинсодержащий раствор гидролизуют лимонной кислотой при концентрации последней 3-5%, температуре 105-120°С и давлении 0,41-0,45 МПа и концентрируют на вакуум-выпарной пленочной установке при температуре 65-70°С с получением глюкозно-фруктозного сиропа.



 

Похожие патенты:

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака и других газов.

Изобретение относится к области физической и коллоидной химии и заключается в получении суспензий наноструктур, используемых при модификации неорганических композиционных материалов, в частности кристаллогидратных композиционных материалов.

Изобретение относится к области микроробототехники и может быть использовано в качестве рабочего органа микроманипулятора для манипулирования микрообъектами, изготовленными из элекропроводниковых материалов.

Изобретение относится к лекарственному средству для лечения инфекционного заболевания, лечения рака, заживления ран и/или детоксификации субъекта, которое содержит наночастицы гетерокристаллического минерала, выбранного из группы гетерокристаллических минералов SiO2, кварцита, сфена, лейкоксена и рутилированного кварца.

Изобретение относится к высокотемпературным электрохимическим устройствам (ЭХУ) с твердым электролитом, таким как электрохимические генераторы (топливные элементы), электролизеры, конвертеры, кислородные насосы и т.п.

Изобретение относится к портативным топливным элементам с нанокатализаторами и твердым полимерным или жидкостным электролитами. .

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, для регистрации и измерения содержания оксида углерода и других газов. .

Изобретение относится к промышленности строительных материалов, а именно к составам и способам изготовления теплоизоляционных ячеистых материалов. .

Изобретение относится к области химии, а именно к химии каталитических процессов, и может быть использовано в производстве получения катализатора синтеза винилацетата.
Изобретение относится к пищевой промышленности. .
Изобретение относится к пищевой промышленности и может быть использовано для получения пищевого функционального продукта, применяемого для непосредственного употребления в пищу в качестве профилактического продукта.
Изобретение относится к мясной промышленности и может быть использовано при производстве колбасных изделий. .

Изобретение относится к мясной промышленности и может быть использовано при производстве колбасных изделий. .

Изобретение относится к мясной промышленности и может быть использовано при производстве колбасных изделий. .
Изобретение относится к мясной промышленности и может быть использовано при производстве колбасных изделий. .
Изобретение относится к мясной промышленности и может быть использовано при производстве колбасных изделий. .
Изобретение относится к технологии получения поверхностно-активных материалов, способных к образованию и стабилизации пен и эмульсий, и могут быть использованы для покрытий, инкапсулирования и доставки лекарств к месту реализации их активности, при домашней или личной гигиене, в пищевой промышленности, нефтяной промышленности, сельском хозяйстве, текстильной промышленности, строительстве, эмульсионной полимеризации, в производстве кож, пластиков, целлюлозной массы, бумаги и фармацевтики.
Изобретение относится к технологии получения поверхностно-активных материалов, способных к образованию и стабилизации пен и эмульсий, и могут быть использованы для покрытий, инкапсулирования и доставки лекарств к месту реализации их активности, при домашней или личной гигиене, в пищевой промышленности, нефтяной промышленности, сельском хозяйстве, текстильной промышленности, строительстве, эмульсионной полимеризации, в производстве кож, пластиков, целлюлозной массы, бумаги и фармацевтики.

Изобретение относится к медицине, а именно к кардиологии и ангиологии, и касается коррекции функций стенки сосудов у больных артериальной гипертонией I-II степени при метаболическом синдроме, перенесших тромбоз сосудов глаза.

Изобретение относится к сходным с натуральными самовспенивающимся жидким кулинарным добавкам и способам их изготовления и использования
Наверх