Способ определения механических напряжений

Изобретение относится к области неразрушающего измерения двухосных механических напряжений магнитоупругим методом и может быть использовано в машиностроении. Техническим результатом является повышение точности измерений путем сокращения ширины зоны у свободного контура изделия, в которой искажены результаты измерений граничных условий. Способ определения механических напряжений заключается в измерении магнитоупругим датчиком в заданных точках координатной сетки на поверхности изделия алгебраической разности главных напряжений. Определяют направления главных напряжений и вычисляют компонент тензора напряжений с использованием граничных условий на свободном контуре с минимизацией погрешности магнитоупругого датчика. Подготавливают пластину из материала исследуемого изделия. Изготавливают пластину-компенсатор искажения магнитного поля датчика в виде полудиска толщиной не менее 2 мм. Пластину плоской стороной ребра приклеивают встык, заподлицо с поверхностью изделия к его торцу клеем с наполнителем так, чтобы центр радиуса пластины совпал с точкой выхода средней линии координатной сетки на свободный контур. Производят измерения датчиком на изделии, начиная с точек, отстоящих от свободного контура на расстоянии не менее половины величины базы измерения датчика. 1 ил.

 

Предлагаемое изобретение относится к области неразрушающего измерения двухосных механических напряжений магнитоупругим методом и может быть использовано в машиностроении.

Известен способ определения механических напряжений /1/, заключающийся в измерении магнитоупругим датчиком в заданных точках координатной сетки на поверхности исследуемого изделия алгебраической разности главных напряжений, определении их направлений и вычислении значений компонент тензора напряжений с использованием граничных условий на свободном контуре. Этот способ предполагает с целью повышения точности измерений путем исключения погрешности магнитоупругого датчика, обусловленной влиянием свободного контура (края изделия), предварительно, на нагруженной пластине-образце определять с помощью магнитоупругого датчика ширину зон у свободного контура, в которых измеренные напряжения отличаются от заданных нагружением пластины. Измерения на поверхности исследуемого изделия производят, начиная с точек, отстоящих от свободного контура на расстоянии, равном ширине указанной зоны.

Однако этот способ не позволяет точно определить граничные условия на свободном контуре, т.к. расстояние от последнего до ближайшей точки с неискаженным результатом измерений ≥20 мм (см. рис. в /1/). Неточное же определение граничных условий вносит системную погрешность в используемый в данном случае экспериментально-расчетный конечно-разностный метод. Второй недостаток - в необходимости предварительных операций на образце с использованием дорогостоящих нагружающих устройств.

Задачей предлагаемого изобретения является повышение точности измерений путем сокращения ширины зоны у свободного контура изделия, в которой искажены результаты измерений граничных условий.

Поставленная задача решается за счет того, что изготавливают пластину-компенсатор искажения магнитного поля датчика в виде полудиска толщиной не менее 2 мм с радиусом, превышающим сумму размера стороны ячейки координатной сетки и трех величин базы измерения датчика, пластину плоской стороной ребра приклеивают встык, заподлицо с поверхностью изделия к его торцу клеем с наполнителем - магнитным порошком так, чтобы центр радиуса пластины совпал с точкой выхода средней линии координатной сетки на свободный контур, после чего производят измерения датчиком на изделии, начиная с точек, отстоящих от свободного контура на расстоянии не менее половины величины базы измерения датчика.

На основании патентного поиска, проведенного по доступным источникам информации, отличительных признаков, указанных в формуле изобретения, не обнаружено.

В связи с этим данное техническое решение соответствует критерию «существенные отличия».

Пример. Фигура 1 поясняет заявляемый способ. На сварной образец 1 нанесена координатная сетка 2. К торцу образца приклеена пластина-компенсатор 3.

Способ осуществляли следующим образом. Определяли двухосные остаточные напряжения в стыковом сварном образце 1 из двух пластин стали Ст3 с размерами 200×100×10 мм каждая. Координатную сетку 2, состоящую из квадратных ячеек со стороной а=10 мм, наносили от свободного контура одной из пластин к середине сварного шва. Использовали измеритель механических напряжений ИМН-4М разработки Воронежского государственного технического университета с базой магнитоупругого датчика l=5 мм. Пластины для сварного образца 1 и пластину-компенсатор 3 искажения магнитного поля датчика в виде полудиска толщиной δ=5 мм и радиусом R=а+3·l=10+3·5=25 мм изготовляли из одной партии листового проката стали Ст3. Пластину-компенсатор 3 плоской стороной ребра приклеивали встык заподлицо с поверхностью образца 1 к его боковому торцу клеем БФ-2 (ГОСТ 12172-74) с наполнителем - магнитным порошком (ТУ 6-14-1009-79). Центр радиуса пластины 3 при этом совмещали с точкой выхода средней из трех линий координатной сетки 2 на свободный контур.

Затем производили измерения магнитоупругим датчиком на образце в узлах координатной сетки в общем направлении от свободного контура к сварному шву, начиная с точек, отстоящих от свободного контура на расстоянии не менее половины величины базы измерений датчика. Для данных датчика и образца оптимальное расстояние составляет величину от 3 до 10 мм, что обеспечивает точное определение граничных условий. Дальнейшие измерения и вычисления направления действия главных напряжений и значений компонентов тензора напряжений производили по известной методике /2/.

Положительный эффект предложенного способа состоит в более точном выявлении опасного уровня напряжений ответственных конструкций, что обеспечивает принятие своевременных мер против их возможного разрушения.

Литература

1. А.с. СССР SU 1583763. G01L 1/12, опублик. БИ №19

2. Кошкин Ю.И. Новая методика определения остаточных сварочных напряжений магнитоупругим способом / Ю.И.Кошкин и др. // Прогрессивная технология в сварочном производстве: Сб. науч. тр. Воронежский политехнический ин-т. - Воронеж, 1985. - С.20-25.

Способ определения механических напряжений, заключающийся в измерении магнитоупругим датчиком в заданных точках координатной сетки на поверхности изделия алгебраической разности главных напряжений, определении их направлений и вычислении компонент тензора напряжений с использованием граничных условий на свободном контуре с минимизацией погрешности магнитоупругого датчика, обусловленной влиянием свободного контура, включающий подготовку пластины из материала исследуемого изделия, отличающийся тем, что изготавливают пластину-компенсатор искажения магнитного поля датчика в виде полудиска толщиной не менее 2 мм с радиусом, превышающим сумму размера стороны ячейки координатной сетки и трех величин базы измерения датчика, пластину плоской стороной ребра приклеивают встык, заподлицо с поверхностью изделия к его торцу клеем с наполнителем - магнитным порошком так, чтобы центр радиуса пластины совпал с точкой выхода средней линии координатной сетки на свободный контур, после чего производят измерения датчиком на изделии, начиная с точек, отстоящих от свободного контура на расстоянии не менее половины величины базы измерения датчика.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности для контроля состояния элементов инженерных конструкций из ферромагнитных материалов в условиях циклического нагружения, и может найти применение в машиностроении и на транспорте.

Изобретение относится к электротехнике, в частности к устройствам для измерения нажатий щетки на коллектор непосредственно на электрической машине в рабочем режиме.

Изобретение относится к измерительной технике и может быть использовано для измерения механических напряжений в деталях конструкций из ферромагнитных материалов.

Изобретение относится к измерительным устройствам и может быть использовано в весо- и силоизмерительных системах для взвешивания автотранспорта и т.д. .

Изобретение относится к силоизмерительной технике и может быть использовано для измерения осевого усилия во вращающихся валах. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения осевого усилия и частоты вращения во вращающихся валах. .

Изобретение относится к измерительной технике, в частности, для контроля состояния конструкций из ферромагнитных материалов и может найти применение в машиностроении, на транспорте, в производстве и контроле ответственных металлоконструкций.

Изобретение относится к измерительной технике, в частности к магнитоупругим преобразователям усилий, и может быть использовано для контроля механических усилий. .

Изобретение относится к области измерения механических осевых напряжений в элементах металлоконструкций. .

Изобретение относится к силоизмерительной технике и может быть использовано для измерения крутящего момента валов. .

Изобретение относится к измерительной технике и может быть использовано для измерения деформации грунта, горных пород, зданий, сооружений и железобетонных конструкций

Изобретение относится к измерительной технике и предназначено для измерения деформации грунта, горных пород, зданий, сооружений и железобетонных конструкций

Изобретение относится к электротехнике, в частности к устройствам для измерения давления щетки на коллектор электрических машин, и может быть использовано в ремонтном хозяйстве электротехнической, железнодорожной и других отраслях

Изобретение относится к областям измерительной техники и неразрушающего контроля и предназначено для определения компонентов тензора механических напряжений в изделиях из ферромагнитных материалов при двухмерном напряженно-деформированном состоянии

Изобретение относится к области измерений и может быть использовано в машиностроении. Способ заключается в измерении магнитоупругим датчиком, оснащенным угломерным устройством, в заданных точках на поверхности изделия углов наклона площадок наибольших главных напряжений, в подготовке пластин-образцов из материала исследуемого изделия, контроле в них изменения углов наклона площадок наибольших главных напряжений в ходе нагружения. При этом в срединной части пластин-образцов наносят определенным образом риски, формирующие полосы заданной ширины и шероховатости поверхности. В пределах полос до и после нагружения пластин-образцов контролируют изменение углов наклона площадок наибольших главных напряжений к продольным осям пластин-образцов. По результатам контроля делается вывод о возможности применения магнитоупругого метода для определения напряжений в изделиях с различными шероховатостями поверхностей. Технический результат заключается в повышении точности измерений механических напряжений в изделиях из ферромагнитных материалов, прошедших обработку на металлорежущих станках. 1 ил., 1 табл.

Изобретение относится к верхнему строению пути, к рельсам, а именно к способам определения механических напряжений путем измерения изменений магнитных свойств металла. Техническим результатом является повышение точности и непрерывность измерения механических напряжений, снижение трудоемкости работ. Способ определения механических напряжений в рельсах заключается в том, что над неподготовленной поверхностью каждой рельсовой нити на расстоянии 2-5 мм от их поверхности параллельно друг другу устанавливают сканирующие устройства, с помощью которых измеряют остаточную намагниченность металла рельсов. Подключают сканирующие устройства к приемному устройству, установленному на передвигающемся по рельсам приспособлении. Переводят с помощью программного обеспечения получаемые при перемещении сканирующих устройств данные остаточной намагниченности в данные механических напряжений в рельсах. Фиксируют полученные результаты как в реальном времени, так и накапливают в блоке памяти. 4 ил.

Изобретение относится к области оценки технического состояния трубопроводов и может быть использовано для определения механических напряжений в стальных трубопроводах подземной прокладки. Сущность изобретения заключается в том, что способ определения механических напряжений в стальных трубопроводах включает изготовление образца трубопровода, из материала, аналогичного материалу конструкции, пошаговое нагружение образца, измерение магнитных параметров металла на каждом шаге нагружения с определенным ориентированием датчика относительно образца, получение зависимости магнитных параметров от величины напряжений в образце, измерение магнитных параметров металла трубопровода, определение величины напряжения с помощью полученной зависимости, при этом в качестве магнитного параметра измеряют собственную напряженность магнитного поля металла труб, измерения выполняют при различных расстояниях от измерительного датчика до поверхности образца, строят графики зависимости магнитных параметров от величины напряжений в образце для каждого из расстояний, определяют расстояние от измерительного датчика до контролируемого трубопровода, определяют напряжения в трубопроводе по кривой зависимости, соответствующей измеренному расстоянию от датчика до трубопровода. Технический результат - расширение возможностей способа. 2 ил.
Изобретение относится к измерительной технике и представляет собой датчик механических напряжений. Датчик включает прямоугольную пластину из полимерного материала, на верхней поверхности которой сделано углубление, в котором помещается детектор, при этом внутри прямоугольной пластины вдоль продольной оси располагается предварительно напряжённый аморфный ферромагнитный микропровод, изготовленный из обогащённых кобальтом сплавов, помещённый внутрь измерительной катушки в виде встречно соединённый соленоидов из медной проволоки. Микропровод соединён с первой парой контактных площадок, а указанная дифференциальная измерительная катушка - со второй парой контактных площадок. Контактные площадки в свою очередь соединены с детектором, включающим источник переменного тока, соединённый с источником магнитного поля, источник постоянного тока, соединённый с первой парой контактных площадок, и усилитель сигнала измерительной катушки, вход которого соединён со второй парой контактных площадок, а выход соединён с аналого-цифровым преобразователем, подключенным к персональному компьютеру. 10 з.п. ф-лы, 5 ил.

Изобретение относится к системе и способу для определения механического напряжения компонента самолета, изготовленного из намагниченного материала. Техническим результатом изобретения является упрощение определения механического напряжения на различной глубине компонента. Система для определения значимой величины (σ) механического напряжения компонента, изготовленного из намагничиваемого материала, содержит: ступень генерирования магнитного поля с изменяющейся амплитуды и ступень захвата для приема сигнала шума Баркгаузена (MBN) при изменениях амплитуды (H) магнитного поля. Причем система содержит блок обработки данных для вычисления обратной величины (1/MBNmax) от максимального значения (MBNmax) сигнала (MBN) при изменениях амплитуды (H) магнитного поля. Блок обработки данных имеет ступень памяти, которая сохраняет данные о линейном соотношении между обратной величиной (1/MBNmax) от максимального значения и значимой величиной (σ) механического напряжения. 2 н. и 12 з.п.ф-лы, 9 ил., 3 табл.

Изобретение относится к способам неразрушающего контроля остаточных напряжений в сварных соединениях и изделиях из ферромагнитных и парамагнитных материалов. Способ позволяет повысить точность контроля действующих и остаточных напряжений в изделии, определить предельное состояние изделия перед его разрушением и ресурс его эксплуатации. Для достижения указанного технического результата в точках поверхности контролируемого изделия, отстоящих друг от друга на равные расстояния, измеряют величину по меньшей мере одной составляющей напряженности магнитного поля. Далее определяют значение градиента магнитного поля для каждой пары соседних точек контроля и по полученным значениям градиентов находят зону концентрации напряжений (ЗКН). Для ЗКН рассчитывают значение магнитного показателя mпр, характеризующего предельное напряженное состояние изделия перед разрушением, и значение магнитного показателя mф, характеризующего фактическое напряженное состояние изделия. Используя полученные значения mпр и mф, оценивают предельное время эксплуатации изделия: Тпр=(mпр/mф)·Тф, где Tф - фактическое время эксплуатации изделия. Остаточный ресурс Tост эксплуатации изделия определяют по формуле: Тост=Тпр-Тф. 3 з.п. ф-лы, 11 ил.
Наверх