Способ получения нанодисперсного порошка гексаборида иттрия


 


Владельцы патента RU 2448044:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (RU)

Изобретение может быть использовано при изготовлении катодов генераторных и электронных устройств. Нанодисперсный порошок гексаборида иттрия получают электролизом расплава, содержащего, мольн.%: хлорид натрия - 50,0, хлорид калия - 30,0, хлорид иттрия - 15,0 и фторборат калия - 5,0, при плотности тока 2,5-5,0 А/см2, температуре 700-750°С в течение 30-40 мин. После полного остывания расплава боридно-солевую грушу отмывают и сушат. Удельная поверхность полученного гексаборида иттрия 30,0-43,5 м2/г, размер частиц 0,5-40 нм. Сокращается время процесса, повышается чистота продукта. 3 пр.

 

Изобретение относится к электрохимическому синтезу соединений иттрия и может быть использовано для получения нанодисперсного чистого порошка гексаборида иттрия, обладающего развитой поверхностью, полупроводниковыми свойствами. Гексаборид иттрия применяется в качестве катода для мощных генераторных устройств, успешно заменяя металлические, а также в разборных системах различных электронных устройств.

Известен способ получения гексаборида иттрия прямым синтезом из иттрия и бора [Lundstrom Т. Structural studies of the solid solubility of transition metals in β-rhombohedral boron. - J. Less-Common Metals. 1973, vol.6, p.299-305]. Недостатком этого способа является низкий выход продукта. Способ термического восстановления оксидов и хлоридов иттрия и бора гидридом лития [Камарзин А.А., Соколов В.В., Зеленин Ю.М., Стонога Ю.А. Способ получения боридов редкоземельных металлов. Патент №2123975] характеризуется высокими температурами процесса, кроме того, получается крупнозернистые продукты.

Наиболее близким к предлагаемому методу является способ получения боридов редкоземельных металлов и иттрия путем электролиза расплава, содержащего криолит и бораты натрия с добавкой гидроксида и карбоната натрия по патенту US 3902973 А, кл. С25В 1/00, 1975. Температура процесса 900-1100°С. Недостатком прототипа является более высокая температура, низкая скорость синтеза, а также крупнозернистые частицы продукта.

Задачей, поставленной авторами изобретения, является повышение дисперсности порошка, повышение скорости процесса и чистоты целевого продукта, а также снижение температурных режимов процесса.

В основе ВЭС нанопорошков гексаборидов иттрия лежат многоэлектронные электрохимические процессы совместного выделения иттрия и бора на катоде и их последующим взаимодействием на атомарном уровне с образованием наноразмерных порошков. В виду того, что взаимодействие компонентов на катоде происходит практически на атомарном уровне (кластеров), то уменьшение размеров наночастиц твердосплавной композиции ведет к увеличению доли поверхностной энергии и, следовательно, к снижению температуры (практически на 200-400°С) взаимодействия иттрия с компонентами расплава с образованием гексаборидов. Возможность применения расплавленных солей для получения редкоземельных элементов и их сплавов подтверждена многими исследователями.

Процесс проводится в трехэлектродной ячейке в электропечи при 700-750°С. Анодом и одновременно контейнером для расплава служит стеклоуглеродный тигель. В качестве электрода сравнения используется платиновый электрод, скрученный в спираль, площадь которого более чем на порядок превышал площадь катода или стеклоуглеродный электрод. Рабочий электрод - вольфрамовый стержень. Синтез происходит в атмосфере очищенного и осушенного аргона, ячейка закрыта герметично.

При достижении рабочей температуры 700-750°С в расплав фонового электролита - смесь хлоридов натрия и калия - добавляют хлорид иттрия, а затем фторборат калия. Электролиз осуществляют в атмосфере аргона в гальваностатическом режиме при плотности катодного тока 2,5-5,0 А/см2. Выход по току 85-90%.

Нанодисперсные порошки гексаборида иттрия получаются при плотностях тока 2,5-5,0 А/см2. При низких концентрациях фторбората получается диборид иттрия. Если концентарация фторбората слишком высокая, то в процессе электролиза получается смесь различных боридов, и свободный бор.

Процесс электросинтеза можно представить в виде последовательных стадий:

- выделение более электроположительного компонента (бор);

- выделение более электроотрицательного компонента (иттрий) на предварительно выделенном боре;

- взаимная диффузия иттрия и бора с образованием соединения YB6.

Пример 1. Процесс получения нанодисперсного порошка гексаборида

иттрия осуществляют в расплавленной смеси KCl-NaCl. Температура 700°С. Катод - вольфрамовый стержень диаметром 0,4 см. Анод - стеклоуглеродный тигель. Плотность тока 2,5 А/см2. Продолжительность электролиза составляет 40 мин, после чего из расплава вынимают боридно-солевую грушу. После полного остывания до комнатной температуры боридно-солевую грушу отмывают дистиллированной водой, и раствором 1 н. NH4OH. После чего порошок борида иттрия высушивают в сушильном шкафу при температуре 150°С. По данным рентгенофазового анализа катодный осадок состоит из гексаборида иттрия YB6 и небольшого количества диборида иттрия YB2 до 10%. По данным сканирующего зондового микроскопа размер частиц 5-40 нм.

Пример 2. Процесс получения нанодисперсного порошка гексаборида иттрия осуществляют в расплавленной смеси KCl - NaCl. Температура 700°С. Катод - вольфрамовый стержень диаметром 0,4 см. Анод - стеклоуглеродный тигель. Плотность тока 3,5 А/см2. Продолжительность электролиза составляет 30 мин, после чего из расплава вынимают боридно-солевую грушу. После полного остывания до комнатной температуры боридно-солевую грушу отмывают дистиллированной водой, и раствором 1 н. NH4OH. После чего порошок гексаборида иттрия высушивают в сушильном шкафу при температуре 150°С. По данным рентгенофазового анализа катодный осадок состоит из гексаборида иттрия YB6. Выход по току 87-92%. Размер частиц по данным сканирующего зондового микроскопа - 1-25 нм.

Пример 3. Процесс получения нанодисперсного порошка гексаборида иттрия осуществляют в эквимольном расплаве KCl-NaCl. Температура 750°С. Катод - вольфрамовый стержень диаметром 0,4 см. Анод - стеклоуглеродный тигель. Плотность тока 5,0 А/см2. Продолжительность электролиза составляет 40 мин, после чего из расплава вынимают боридно-солевую грушу. После полного остывания до комнатной температуры боридно-солевую грушу отмывают дистиллированной водой, и раствором 1 н. NH4OH. После чего порошок гексаборида иттрия высушивают в сушильном шкафу при температуре 150°С. По данным рентгенофазового анализа катодный осадок состоит из гексаборида иттрия YB6. Выход по току 80-83%. Удельная поверхность порошка - 41,0-43,5 м2/г. Размер частиц по данным сканирующего зондового микроскопа - 0,5-10 нм.

Технический результат изобретения заключается в возможности получения нанодисперсного порошка гексаборида иттрия с размерами частиц 0,5-40 нм и в повышении скорости получения (синтеза) в два раза (продолжительность электролиза 30-40 мин), и чистоты целевого продукта, а также снижение температурных режимов процесса.

Способ получения нанодисперсного порошка гексаборида иттрия, включающий электролиз расплава с последующей отмывкой и сушкой, отличающийся тем, что электролиз ведут при плотности тока 2,5-5,0 А/см2, температуре процесса 700-750°С, продолжительности процесса 30-40 мин и при следующем соотношении компонентов, мол.%:

хлорид натрия 50,0
хлорид калия 30,0
хлорид иттрия 15,0
фторборат калия 5,0


 

Похожие патенты:
Изобретение относится к области неорганической химии, а именно к способу получению трифторидов редкоземельных элементов, применяемых в лазерной и инфракрасной технике.
Изобретение относится к композиции, состоящей из оксида церия и оксида другого редкоземельного элемента с высокой удельной площадью поверхности 20 м2/г после обжига при температуре 1000°С в течение 5 часов.
Изобретение относится к способам выделения концентрата лантаноидов из экстракционной фторсодержащей фосфорной кислоты и может быть использовано в химической и сопутствующих отраслях промышленности.
Изобретение относится к области получения сложных оксидных материалов и может быть использовано при производстве высокотемпературных электропроводящих керамических изделий, элементов тонкой технологической керамики, катализаторов для различных применений, элементов альтернативных источников энергии и др.

Изобретение относится к композициям на основе оксидов циркония, иттрия и вольфрама, к каталитической системе на основе этих композиций, способу получению композиций и применению их в качестве катализатора или подложки катализатора в частности для обработки выхлопных газов автомобилей.
Изобретение относится к способам получения спиртовых сольватов хлоридов редкоземельных элементов (РЗЭ), используемых в качестве компонентов катализаторов полимеризации диенов, и может найти применение при производстве цис-1,4-гомополимеров и цис-1,4-сополимеров в промышленности синтетических каучуков.
Изобретение относится к области неорганической химии, а именно к способу получения сложных сульфидов редкоземельных элементов, применяемых в качестве полупроводниковых материалов.
Изобретение относится к способу измельчения по меньшей мере одного минерального материала в присутствии измельчающих бисерных шариков из оксида циркония, содержащего оксид церия, с удельным содержанием оксида церия (между 14 и 20 вес.% относительно общего веса указанных шариков, предпочтительно между 15 и 18% и наиболее предпочтительно примерно 16%) и удельным средним размером зерен после спекания (меньше 1 мкм, предпочтительно меньше 0,5 мкм и наиболее предпочтительно меньше 0,3 мкм).
Изобретение относится к способу извлечения лантаноидов из апатитового концентрата и может быть использовано в химической промышленности. .

Изобретение относится к области получения сложных оксидных материалов, в частности к получению сложных оксидных соединений редкоземельных металлов (РЗМ), и может быть использовано при производстве высокотемпературных электропроводящих керамических изделий (например, электродов и других частей электропроводящих устройств, работающих в высокотемпературных и/или окислительных средах), элементов тонкой технологической керамики, катализаторов для различных применений и др.

Изобретение относится к области химической технологии, а именно к получению новых сверхпроводящих борсодержащих соединений. .

Изобретение относится к получению электропроводящих соединений металлов. .
Изобретение относится к электролитическим способам получения неорганических соединений, в частности соединений празеодима. .

Изобретение относится к электролитическим способам получения неорганических соединений, в частности соединений неодима. .
Изобретение относится к металлургии тугоплавких соединений и может быть использовано в качестве керамики и защитного покрытия в высокотемпературных агрегатах. .

Изобретение относится к области изготовления керамических изделий, а именно к способам приготовления шихты для изготовления изделий из полученного борокарбидным методом чернового диборида циркония.
Изобретение относится к технологии производства высокотвердых жаростойких материалов на основе циркония, а именно к способам получения диборида циркония. .
Изобретение относится к производству жаро- и радиационностойких материалов на основе циркония, в частности к производству его диборида. .
Изобретение относится к способу получения слоистых высокотемпературных сверхпроводников состава MgB2, которые могут найти применение в атомной энергетике (легкие поглощающие материалы), в промышленности (абразивные порошки), а также в различных приборах электронной, измерительной и вычислительной техники в качестве высокотемпературного сверхпроводящего материала с температурой перехода в сверхпроводящее состояние Тc40 К.

Изобретение относится к процессам получения нановолокон методом электроформования, в частности нановолокон с диаметром d=50-4500 нм из алифатических сополиамидов. .
Наверх