Электролитический способ получения наноразмерных порошков гексаборида неодима

Изобретение может быть использовано в химической технологии. В стеклоуглеродный тигель помещают солевую смесь, содержащую 3,0-5,0 мас.% безводного хлорида неодима, 7,0-11,00 мас.% фторбората калия, остальное - эквимолярная смесь хлорида калия и хлорида натрия. Тигель с солевой смесью помещают в кварцевую ячейку и выдерживают в атмосфере очищенного и осушенного аргона до ее расплавления. По достижении рабочей температуры в расплав опускают вольфрамовый катод и проводят электролиз при плотностях тока от -0,1 до -1,0 А/см2, потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,5 до -4,0 В и температуре 700-800°С. Порошок гексаборида неодима выделяется на катоде и имеет размер частиц 40-180 нм. Изобретение позволяет снизить температуру проведения процесса до 700°С, уменьшить затраты электроэнергии и получить целевой продукт в чистом виде.

 

Изобретение относится к электролитическим способам получения неорганических соединений, в частности соединений неодима.

Известен способ получения гексаборида неодима электролизом раплавленных сред. В состав ванны для электролиза входят окислы редкоземельных металлов и борный ангидрид с добавками фторидов щелочных и щелочно-земельных металлов для снижения температуры и вязкости ванны. Температура электролиза смесей составляет 950-1000°С, напряжение на ванне 3-15 В, плотность тока 0,3-3,0 А/см2. Состав ванны для получения гексаборида неодима: 1/15 Nd2O3+2B2O3+Li2O+LiF (Самсонов Г.В. Тугоплавкие соединения редкоземельных металлов. М.: Металлургия, 1964, стр.53-55). Этот способ взят нами за прототип.

Недостатками этого способа являются высокая температура синтеза и сложность отделения целевого продукта от расплавленного электролита из-за низкой растворимости боратов и фторидов, загрязнение побочными продуктами, в частности боратами.

Задача изобретения - получение чистого наноразмерного порошка гексаборида неодима без образования побочных продуктов и снижение температуры процесса синтеза.

Сущность изобретения заключается в том, что осуществляют совместное электровыделение неодима и бора из хлоридного расплава, содержащего хлорид неодима и фторборат калия на катоде, и последующее взаимодействие их на атомарном уровне с образованием нанодисперсных порошков гексаборида неодима. Процесс осуществляется в трехэлектродной кварцевой ячейке, где в качестве катода используется вольфрамовый пруток; электрода сравнения - стеклоуглеродная пластина; анода и одновременно контейнера - стеклоуглеродный тигель. Синтез нанодисперсного порошка гексаборида неодима проводят посредством потенциостатического или гальваностатического электролиза из эквимольного расплава KCl-NaCl, содержащего хлорид неодима и фторборат калия в атмосфере очищенного и осушенного аргона. Потенциостатический электролиз эквимольного расплава KCl-NaCl, содержащего хлорид неодима и фторборат калия, проводят на вольфрамовом электроде в пределах от -2,5 до -4,0 В относительно стеклоуглеродного электрода сравнения. Гальваностатический элетролиз того же расплава при плотностях тока от -0,1 до -1,0 А/см2. Синтез проводят в атмосфере очищенного и осушенного аргона. Катодно-солевую грушу, состоящую из гексаборида неодима, отмывают от фторида неодима во фториде калия.

Электрохимические процессы, происходящие при образовании боридов неодима, можно представить следующими уравнениями:

В качества источника неодима используют безводный хлорид неодима, в качестве источника бора - фторборат калия, в качестве растворителя - эквимольную смесь хлорида калия и хлорида натрия при следующем соотношении компонентов, мас.%:

хлорид неодима 3,0-5,0;

фторборат калия 7,0-11,0;

остальное эквимолярная смесь хлоридов калия и натрия.

Электролиз ведут в потенциостатическом (гальваностатическом) режиме при температуре 700-800°С. 700°С - оптимальная рабочая температура для данного растворителя. Возможно осуществление синтеза и при температуре 800°С; дальнейшее повышение температуры приводит к испарению расплава, увеличению давления пара над расплавом.

Выбор компонентов электролитической ванны произведен на основании термодинамического анализа и кинетических измерений совместного электровыделения неодима и бора из хлоридных расплавов. Из соединений неодима и бора, не содержащих кислород, хлорид неодима и фторборат калия являются достаточно низкоплавкими и хорошо растворимыми в эквимольном расплаве KCl-NaCl. Растворитель (эквимольный расплав KCl-NaCl) выбран из следующих соображений:

напряжение разложения расплавленной смеси KCl-NaCl больше таковых для расплавов NdCl3 и KBF4; хорошая растворимость в воде.

Фазовый состав идентифицирован методом рентгенофазового анализа на дифрактометре ДРОН-6, он показал наличие только фазы NdB6. Размер частиц порошка определяли с помощью сканирующего зондового микроскопа Solver PRO P47

Пример 1

В стеклоуглеродный тигель 40 мл помещали солевую смесь массой 33,3 г, содержащую 1,0 г NdCl3 (3,5 мас.%); 2,3 г KBF4 (7,96 мас.%); 13,7 г KCl (41,1 мас.%); 16,3 г NaCl (48,9 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 700°С в расплав опускают вольфрамовый катод, электролиз проводят при потенциале -2,5 В относительно стеклоуглеродного электрода сравнения (плотность тока -0,1 А/см2). Катодно-солевую грушу, состоящую из гексаборида неодима, отмывают от фторида неодима во фториде калия. Размер частиц полученного порошка гексаборида неодима 180 nm.

Пример 2

В стеклоуглеродный тигель 40 мл помещали солевую смесь массой 33,5 г, содержащую 1,15 г NdCl3 (3,4 мас.%); 2,3 г KBF4 (6,87 мас.%); 13,7 г KCl (40,9 мас.%); 16,3 г NaCl (48,7 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 700°С в расплав опускают вольфрамовый катод. От источника подают ток -0,9 А (плотность тока -0,6 А/см2). Потенциал -4,0 В. Катодно-солевую грушу, состоящую из гексаборида неодима, отмывают от фторида неодима во фториде калия. Размер частиц полученного порошка гексаборида неодима 120 nm.

Пример 3

В стеклоуглеродный тигель 40 мл помещали солевую смесь массой 34 г, содержащую 1,22 г NdCl3 (3,5 мас.%); 2,77 г KBF4 (8,15 мас.%); 13,7 г KCl (40,2 мас.%); 16,3 г NaCl (47,9 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 700°С в расплав опускают вольфрамовый катод. От источника подают ток -0,9 А (плотность тока -1,0 А/см2). Потенциал -4,0 В. Катодно-солевую грушу, состоящую из гексаборида неодима, отмывают от фторида неодима во фториде калия. Размер частиц полученного порошка гексаборида неодима 40 nm.

Пример 4

В стеклоуглеродный тигель 40 мл помещали солевую смесь массой 35,8 г, содержащую 1,8 г NdCl3 (5,0 мас.%); 4,0 г KBF4 (11 мас.%); 13,7 г KCl (38,2 мас.%); 16,3 г NaCl (45,5 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы. По достижении рабочей температуры 700°С в расплав опускают вольфрамовый катод, электролиз проводят при потенциале -2,6 В относительно стеклоуглеродного электрода сравнения (плотность тока -0,3 А/см2). Катодно-солевую грушу, состоящую из гексаборида неодима, отмывают от фторида неодима во фториде калия. Размер частиц полученного порошка гексаборида неодима 160 nm.

Техническим результатом является: снижение температуры до 700°С по сравнению с прототипом 950-1000°С и за счет этого уменьшение затрат электроэнергии; получение целевого продукта в чистом виде за счет хорошей растворимости эквимольного расплава хлорида калия и хлорида натрия в воде, растворимости образующегося фторида неодима во фториде калия.

Список литературы

1. Самсонов Г.В. Тугоплавкие соединения редкоземельных металлов. М.: Металлургия, 1964, стр.53-55.

2. Andrieux L., Ann. Chimie, 1929, vol.12, p.422.

Электролитический способ получения порошков гексаборида неодима из хлоридного расплава, содержащего ионы неодима и бора, отличающийся тем, что используют расплав, содержащий 3,0-5,0 мас.% безводного хлорида неодима, 7,0-11,00 мас.% фторбората калия, остальное - эквимольная смесь хлорида калия и хлорида натрия, процесс проводят в атмосфере очищенного и осушенного аргона при температурах 700-800°С, плотностях тока от -0,1 до -1,0 А/см2 и потенциалах электролиза относительно стеклоуглеродного электрода сравнения от -2,5 до -4,0 В с получением наноразмерных порошков гексаборида неодима.



 

Похожие патенты:

Изобретение относится к разработке неорганических красителей, а именно неорганических пигментов, в частности к составам для окрашивания на основе сульфидов лантана, олова и кальция, которые могут быть использованы в лакокрасочной промышленности, производстве пластмасс, керамики, строительных материалов.
Изобретение относится к области неорганической химии, в частности к разработке синтеза сверхпроводников на основе купратов редкоземельного элемента и бария (LnВа2Сu3 O7- , где Ln=Sm, Eu, Gd, Y, Tb, Dy, Но, Er).
Изобретение относится к способу получения карбоксилатов редкоземельных элементов (РЗЭ), которые могут быть использованы в качестве компонентов катализаторов для производства диеновых каучуков с высоким содержанием 1,4-цис-звеньев.
Изобретение относится к способу переработки отходов производства постоянных магнитов. .
Изобретение относится к способам выделения концентрата лантаноидов из экстракционной фторсодержащей фосфорной кислоты, получаемой в дигидратном процессе переработки апатитового концентрата, и может быть использовано в химической и сопутствующих отраслях промышленности.
Изобретение относится к области химической технологии неорганических веществ и может быть использовано в тех случаях, когда необходимо получить редкоземельные элементы (РЗЭ), очищенные от примесей.

Изобретение относится к фосфиноксидам, которые можно применять в качестве хелатирующих агентов для экстракции лантанидов из кислых водных растворов, и может применяться для экологического мониторинга сточных вод в районах переработки и захоронения радиоактивных отходов.

Изобретение относится к области химии, в частности к способам получения синтетических слоистых гидроксидов. .

Изобретение относится к области получения тонких пленок материалов, которые могут быть использованы в устройствах систем полупроводниковой спиновой электроники. .
Изобретение относится к металлургии тугоплавких соединений и может быть использовано в качестве керамики и защитного покрытия в высокотемпературных агрегатах. .

Изобретение относится к области изготовления керамических изделий, а именно к способам приготовления шихты для изготовления изделий из полученного борокарбидным методом чернового диборида циркония.
Изобретение относится к технологии производства высокотвердых жаростойких материалов на основе циркония, а именно к способам получения диборида циркония. .
Изобретение относится к производству жаро- и радиационностойких материалов на основе циркония, в частности к производству его диборида. .
Изобретение относится к способу получения слоистых высокотемпературных сверхпроводников состава MgB2, которые могут найти применение в атомной энергетике (легкие поглощающие материалы), в промышленности (абразивные порошки), а также в различных приборах электронной, измерительной и вычислительной техники в качестве высокотемпературного сверхпроводящего материала с температурой перехода в сверхпроводящее состояние Тc40 К.
Изобретение относится к неорганической химии, а именно к способу получения боридов редкоземельных металлов, которые могут быть использованы при производстве термокатодных материалов.

Изобретение относится к неорганической химии и порошковой металлургии, в частности к сложным (композиционным) поликристаллическим материалам системы Ti-B, которые могут быть использованы в качестве износостойких и абразивных материалов.

Изобретение относится к порошковой металлургии, в частности к способам получения порошков тугоплавких неорганических соединений, а именно боридов переходных металлов, синтезом в режиме горения, которые могут быть использованы в авиационной, станкостроительной и обрабатывающей промышленности, а также в цветной металлургии.

Изобретение относится к электролитическим способам получения неорганических соединений, в частности соединений неодима

Наверх