Композиция для покрытий


 


Владельцы патента RU 2451047:

Учреждение Российской академии наук Институт химической физики им. Н.Н. Семенова (ИХФ РАН им. Н.Н. Семенова) (RU)
Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) (RU)

Изобретение относится к полимерным строительным материалам и может быть использовано для изготовления покрытий беговых дорожек, спортивных залов, кровельных и гидроизоляционных покрытий. Композиция для покрытий содержит: олигобутадиендиол, глицерин, минеральный наполнитель, полиизоцианат, оловоорганический катализатор, 2,4,6-три-трет-бутилфенол, этилсиликат, полисульфидный олигомер - жидкие тиоколы со среднечисленной молекулярной массой 1700-5500 и вязкостью при 25°С 7,5-50 Па·с, оксид цинка, диатомит, модифицирующая добавка - полифторированные спирты-теломеры общей формулы H(CF2-CF2)nCH2OH, где n=4-8. Технический результат: повышение седиментационной устойчивости композиции, динамических и физико-механических, адгезионных показателей покрытия. 2 табл.

 

Изобретение относится к способам получения композиций, предназначенных для изготовления покрытий легкоатлетических беговых дорожек, спортивных залов, игровых площадок, а также кровельных и гидроизоляционных покрытий.

Известна композиция для изготовления эластичных покрытий, включающая бутадиен-пипериленовый каучук, оксид кальция, мел, глицерин, катализатор уретанообразования, полиизоцианат и триэтилбензиламмонийхлорид [патент РФ 2211850 C1, кл. 6 C09D 109/00, опубл. 1999].

Широкое распределение по типу функциональности бутадиен-пипериленового олигомера обусловливает дефектность трехмерной сетки, образующейся при его отверждении полиизоцианатом, что является следствием низкого уровня динамических и физико-механических показателей покрытия.

Известна композиция для покрытий спортивных площадок и гидроизоляционных покрытий, включающая гидроксилсодержащий сополимер полибутадиена и изопрена, пластификатор, минеральный наполнитель, трехфункциональный низкомолекулярный спирт, полиизоцианат, катализатор уретанообразования и 2,4,6-три-трет-бутилфенол [патент РФ 2186812 C2, кл. 7 C09D 109/00, опубл. 2002].

Недостатком композиции является низкая седиментационная устойчивость. Покрытие, полученное из данной композиции, характеризуется низким уровнем динамических и физико-механических показателей.

Наиболее близкой к предлагаемой по технической сущности и достигаемому результату является композиция, включающая олигобутадиендиол, пластификатор, минеральный наполнитель, полиизоцианат, оловоорганический катализатор и 2,4,6-три-трет-бутилфенол, этилсиликат, причем она дополнительно содержит полисульфидный олигомер - жидкие тиоколы со среднечисленной молекулярной массой 1700-5500 и вязкостью при 25°C 7,5-50 Па·с, оксид цинка, диатомит, поверхностно-активное вещество при следующем соотношении компонентов:

Олигобутадиендиол 100

Глицерин 5-20

Минеральный наполнитель 60-100

Полиизоцианат 14-24

Оловоорганический катализатор 0,01-1,10

2,4,6-Три-трет-бутилфенол 0,5-1,5

Этилсиликат 0,8-1,6

Полисульфидный олигомер 5-15

Оксид цинка 10-20

Диатомит 20-30

Поверхностно-активное вещество 4-6

[патент РФ 2331661, кл. 7 C09D 175/08, опубл. 2008].

Недостатком является невысокий уровень динамических и адгезионных свойств. Натриевые соли рецинолеевых кислот фракции C17-C19, которые используются в качестве поверхностно-активного вещества, не способны встраиваться в полимерную матрицу и в процессе эксплуатации полимерного покрытия экстрагируются, что негативно сказывается на эксплуатационных свойствах материала.

Задачей предлагаемого изобретения является получение покрытия с улучшенными динамическими характеристиками и повышенными адгезионными свойствами.

Поставленный технический результат решается путем использования композиции, включающей олигобутадиендиол, глицерин, минеральный наполнитель, полиизоцианат, оловоорганический катализатор, 2,4,6-три-трет-бутилфенол, этилсиликат, причем она дополнительно содержит полисульфидный олигомер, оксид цинка, диатомит, модифицирующую добавку - полифторированные спирты-теломеры общей формулы H(CF2-CF2)nCH2OH, где n=4-8, при следующем соотношении компонентов, мас.ч.:

Олигобутадиендиол 100

Глицерин 5-20

Минеральный наполнитель 60-100

Полиизоцианат 14-24

Оловоорганический катализатор 0,01-1,10

2,4,6-Три-трет-бутилфенол 0,5-1,5

Этилсиликат 0,8-1,6

Полисульфидный олигомер 5-15

Оксид цинка 10-20

Диатомит 20-30

Модифицирующая добавка 0,4-0,6

Сущность предлагаемого способа получения композиции заключается в следующем. По параметру растворимости полисульфидные олигомеры занимают промежуточное положение между олигодиендиолами и триолами. Предварительное смешение полисульфидного олигомера с глицерином позволяет получать гомогенную смесь, хорошо совместимую с олигодиендиоловым связующим. При отверждении композиции образуется регулярная сетчатая структура с узким молекулярно-массовым распределением межузловых цепей. Кроме того, сульфгидрильные группы полисульфидного олигомера взаимодействуют с полиизоцианатом, что приводит к дополнительному сшиванию эластомерной матрицы. Введение в композицию оксида цинка способствует увеличению степени превращения меркаптогрупп полисульфидного олигомера и двойных связей олигобутадиендиола. Использование диатомита, имеющего в своем составе значительное количество связанной воды (от 3-15 мас.%), обладающего развитой поверхностью и щелочной реакцией водной вытяжки, способствует более эффективному окислению меркаптогрупп полисульфидного олигомера и повышению физико-механических свойств покрытия. Использование модифицирующей добавки позволяет повысить перерабатываемость, адгезионные показатели и седиментационную устойчивость композиции за счет увеличения адсорбционного взаимодействия на границе олигомерное связующее-твердая фаза.

В качестве олигобутадиендиола в композиции используются сополимер бутадиена и изопрена ПДИ-1К (ТУ 38.103342-88) с соотношением мономеров 70:30; молекулярной массой 3000-3500; содержанием гидроксильных групп, мас.%, 0,75-0,89 и олигобутадиендиолы с молекулярной массой 2000-5000; индексом полидисперсности 1,20-1,35; вязкостью по Брукфилду, Па·с (25°C), 8,5-22; содержанием концевых гидроксильных групп, %, 0,7-1,7; микроструктурой, %, 1,4-цис 10-15, 1,4-транс 20-25, 1,2-(винил) 60-70; распределением по ОН-группам (РТФ), %, бесфункциональные 2, монофункциональные 6, бифункциональные 92; плотностью, кг/м3, 900-910 (олигобутадиендиолы Krasol LBH производства фирмы Sartomer).

Наполнителями композиции служат минеральные порошки средней дисперсности, например мел, известь-отсев, каолин, тальк.

2,4,6-Три-трет-бутилфенол представляет собой кристаллический порошок с зелено-желтым оттенком, хорошо растворим в углеводородах и имеет следующие характеристики: температура плавления 129-131°C, массовая доля золы - не более 0,05%. Получают путем алкилирования фенола изобутиленом в присутствии катализатора. Торговое название - антиоксидант П-23 (ТУ 6-14-26-77).

Этилсиликат (ТУ 6-02-895-86) представляет собой смесь эфиров ортокремниевой кислоты. Является продуктом реакции этилового спирта с четыреххлористым кремнием. Имеет следующие характеристики: плотность, кг/м3 - 955-990; массовая доля диоксида кремния, % - 31-34; массовая доля тетраэтоксисилана, % - 50-60; оптическая плотность при длине волны 600 нм - 0,3-0,4.

Глицерин (ГОСТ 6259-75) - низкомолекулярный трехфункциональный спирт, который используется в качестве пластификатора и выполняет также функцию агента разветвления цепи.

В качестве полиизоцианата в композиции используются полиметиленполифениленполиизоцианаты, получаемые фосгенированием продукта конденсации анилина с формальдегидом (ТУ 2224-152-04691277-96). Содержание изоцианатных групп 29,5-31%.

В качестве оловоорганического катализатора применяют октоат олова, дибутилдилауринат олова (ТУ 6-02-818-78), могут использоваться и другие оловоорганические соединения, применяемые для синтеза полиуретанов.

В качестве полисульфидного олигомера используются жидкие тиоколы марок I, II и НВБ-2, характеризуемые среднечисленной молекулярной массой 1700-5500; среднечисленной функциональностью 2,22-2,68; содержанием SH-групп 1,6-4,3; вязкостью, Па·с (25°C), 7,5-50 (ГОСТ 12812-80, ТУ 38.50309-93).

Оксид цинка (ГОСТ 202-84) используется в качестве отвердителя и наполнителя.

Диатомит (ТУ 5761-001-25310144-99) представляет собой легкие пористые породы от белого до желтовато-серого цвета. Средняя плотность диатомита колеблется в пределах от 0,15 до 0,6 г/см3. Диатомит на 96% состоит из водного кремнезема (опала) общей формулы SiO2·nH2O.

В качестве модифицирующей добавки использовался промышленный продукт, представляющий собой смесь твердых, полифторированных спиртов-теломеров, синтезируемых по радикальному механизму теломеризации тетрафторэтилена в метиловом спирте (ТУ 301-14-1-89), общей формулой:

H(CF2CF2)nCH2OH, где n=4-8.

В состав композиции могут быть введены добавки, придающие материалу покрытия другие преимущества. В качестве компонента, обеспечивающего снижение расхода композиции на изготовление единицы площади покрытия, используется резиновая крошка. Для улучшения внешнего вида в композицию могут быть введены пигменты.

Для изготовления композиции используется смесительное оборудование, обеспечивающее получение гомогенной суспензии наполнителя в объеме композиции со степенью перетира твердых частиц не более 100 мкм. Полиизоцианат, оксид цинка и оловоорганический катализатор поставляют в комплекте с композицией и добавляют в нее на месте укладки покрытия. Резиновую крошку вмешивают в композицию перед введением отвердителя.

Состав и свойства композиции приведены в таблицах 1 и 2.

Пример 1. Введение компонентов композиции осуществляют следующим образом. В смеситель с якорной мешалкой объемом 1 л загружают 100 г олигобутадиендиола Krasol с молекулярной массой 2000 и содержанием гидроксильных групп 1,7%, 5 г глицерина, 15 г полисульфидного олигомера - тиокола марки I, 0,4 г модифицирующей добавки, 50 г мела, 10 г извести-отсева, 0,1 г октоата олова, 0,5 г 2,4,6-три-трет-бутилфенола, 0,8 г этилсиликата, 30 г диатомита. Смешение компонентов проводят в течение 3 часов. В полученную смесь добавляют 10 г резиновой крошки и перемешивают в течение 30 минут, а затем добавляют 24 г полиизоцианата, 20 г оксида цинка и вновь перемешивают в течение 8 мин. Полученную массу заливают в формы и выдерживают 20-25 суток при температуре 18-25°C.

Аналогичным образом готовятся композиции по примерам 2-10.

Пример по прототипу. Введение компонентов композиции осуществляют следующим образом. В смеситель с якорной мешалкой объемом 1 л загружают 100 г олигобутадиендиола Krasol с молекулярной массой 2000 и содержанием гидроксильных групп 1,7%, 20 г глицерина, 10 г полисульфидного олигомера - тиокола марки I, 6 г поверхностно-активного вещества, 100 г талька, 1,5 г 2,4,6-три-трет-бутилфенола, 1,6 г этилсиликата и 30 г диатомита. Полученную смесь перемешивают в течение 30 мин, затем добавляют 16 г полиизоцианата, 15 г оксида цинка и 0,03 г дибутилдилаурената олова, вновь перемешивают в течение 8 мин. Полученную массу заливают в формы и выдерживают 20-25 суток при температуре 18-25°C.

Образцы покрытия испытывают по ГОСТ 263-75, ГОСТ 275-75, ГОСТ 6950-73, ГОСТ 2678-88, ГОСТ 26578-85. Динамический модуль упругости и тангенс угла диэлектрических потерь определяют методом однократного ударного сжатия на маятниковом эластометре (см. Кувшинский Е.В., Сидорович Е.А. Маятниковый эластометр КС // Журнал теоретической физики, 1957. Т.26. 4, с.878-886. Сидорович Е.А., Кувшинский Е.В. Изучение ударного сжатия резин // Физика твердого тела. 1961. Т.3. 11, с.3487-3494). Испытания на отскок мяча выполняют по DIN 18035, часть 6, путем определения отношения высоты отскока мяча от покрытия по сравнению с бетонным полом.

Седиментационную устойчивость оценивали по следующей методике. Композиция сразу после изготовления заливалась в цилиндры объемом 100 см3. Цилиндры выдерживались при температуре 45±2°C в течение 60 суток. По истечении заданного времени выдержки отбирался верхний слой композиции в количестве 40 мл. Пробу растворяли в уайт-спирите и центрифугировали раствор до полного отделения твердой фазы, содержание которой определяли гравиметрическим методом. Далее рассчитывали количество твердой фазы φ, оставшейся в отобранном слое: φ=x1/x0, где x0 - содержание наполнителей в свежеприготовленной композиции, мас.%, x1 - содержание наполнителей в отобранном слое после выдержки композиции, мас.%.

Как видно из таблиц 1 и 2, при содержании полисульфидного олигомера менее 5 мас.ч. не достигается эффект повышения динамических и физико-механических свойств. При концентрации полисульфидного олигомера свыше 15 мас.ч. покрытие имеет пониженный уровень комплекса свойств из-за конкурирующей реакции сульфгидрильных групп полисульфидного олигомера и гидроксильных групп олигодиендиола с полиизоцианатом.

Использование пластификатора менее 5 мас.ч. приводит к ухудшению перерабатываемости, снижению прочностных и деформационных свойств покрытий. При увеличении концентрации пластификатора более 20 мас.ч. снижаются прочностные свойства покрытий.

При содержании полиизоцианата менее 14 мас.ч. снижаются прочностные свойства покрытия. Превышение содержания полиизоцианата свыше 24 мас.ч. приводит к вспениванию композиции.

Использование меньшего чем 0,01 мас.ч. оловоорганического катализатора приводит к снижению скорости отверждения композиции. При содержании катализатора уретанообразования более 1,10 мас.ч. снижается жизнеспособность композиций.

При концентрации минерального наполнителя менее 60 мас.ч. снижаются прочностные свойства материала покрытия. Использование большего чем 100 мас.ч. количества оксида цинка приводит к снижению относительного удлинения отвержденного материала.

При содержании 2,4,6-три-трет-бутилфенола менее 0,5 мас.ч. снижается стойкость покрытия к атмосферному старению. Использование 2,4,6-три-трет-бутилфенола в количестве более 1,5 мас.ч. приводит к снижению стойкости покрытия к атмосферному воздействию.

Использование этилсиликата в количестве менее 0,8 мас.ч. приводит к снижению динамических показателей покрытия. При применение большего чем 1,6 мас.ч. количества этилсиликата снижаются прочностные свойства покрытия.

При концентрации оксида цинка менее 10 мас.ч. снижаются прочностные свойства материала покрытия. Использование большего чем 20 мас.ч. количества оксида цинка приводит к снижению относительного удлинения отвержденного материала.

Использование диатомита в количестве менее 20 мас.ч. приводит к снижению твердости покрытия. При концентрации диатомита более 30 мас.ч. снижаются прочностные свойства покрытия.

При концентрации модифицирующей добавки менее 0,4 мас.ч. снижается седиментационная устойчивость композиции. Использование большего чем 0,6 мас.ч. количества модифицирующей добавки приводит к снижению прочностных свойств покрытия.

Таблица 1
Наименование компонентов Состав, мас.ч Прототип, пат. 2331661
1 2 3 4 5 6 7 8 9 10
Олигобутадиендиол:
ПДИ-1К - 100 - - - - - - 100 - -
Krasol LBH 100 - 100 100 100 100 100 100 - 100 100
Минеральный наполнитель:
- мел 50 - - 80 90 120 - - - 80 -
- известь-отсев 10 - - 20 - - - - - 20 -
- каолин - 100 - - - - 120 - 100 - -
- тальк - - 100 - - - - 60 - - 100
Пластификатор 5 15 20 20 20 40 2,5 15 15 20 20
Триэтаноламин - - - - - - - - - - -
Октоат олова 0,1 - - - 0,05 - 0,10 0,15 - - -
Дибутилдилауринат олова - 0,01 0,03 1,10 - 0,005 - - 0,01 1,15 0,03
2,4,6-Три-трет-бутилфенол 0,5 1,0 1,5 1,0 0,5 1,0 0,25 2,0 1,0 1,0 1,5
Этилсиликат 0,8 1,3 1,6 0,9 1,4 0,8 0,4 1,5 2,5 1,6 1,6
Резиновая крошка 10 - - - 10 - - - - - -
Пигмент красный С - 5 - 5 - - - - 5 5 -
Полиизоцианат 24 20 16 16 14 16 10 28 20 16 16
Полисульфидный олигомер 15 15 10 10 5 2,5 25 5 15 10 10
Оксид цинка 20 15 15 10 10 50 5 15 15 20 15
Диатомит 30 20 30 25 20 25 20 5 50 10 30
Поверхностно-активное вещество - - - - - - - - - - 6
Модифицирующая добавка 0,40 0,45 0,50 0,60 0,35 0,60 1,00 0,50 0,05 0,35 -
Примечание:
1. В качестве пластификатора в примерах 1-10 используется глицерин, в прототипе - хлорпарафин ХП-470.
2. Молекулярная масса/содержание гидроксильных групп (%) олигобутадиендиола Krasol LBH по примерам составляет: в примерах 1, 2 - 2000/1,70, 3 и прототипе - 3000/1,3; в примерах 4, 6, 10 - 4000/0,85; в примерах 5, 7 - 5000/0,70; в примерах 8, 9 - 1500/2,30.
3. В качестве полисульфидного олигомера в примерах 1, 7, 8 используется тиокол марки I, в примерах 2, 3, 5, 10 - тиокол марки II, в примерах 4, 6, 7, 9 - тиокол марки НВБ-2.
4. В качестве модифицирующей добавки в примерах 1-10 использовались полифторированные спирты-теломеры, в качестве поверхностно-активного вещества в прототипе используются натриевые соли реционолеевых кислот фракции C17-C19.
Таблица 2
Показатели покрытия Значения показателей Прототип, пат. 2331661
1 2 3 4 5 6 7 8 9 10
Количество твердой фазы в пробе, % 90 88 90 87 88 68 65 85 69 85 90
Твердость по Шору А, усл.ед. 77 83 80 73 75 63 62 70 70 58 83
Условная прочность, МПа 3,4 3,4 3,1 3,5 3,1 1,1 0,8 3,7 2,8 3,0 3,3
Относительное удлинение, % 215 235 217 227 185 100 370 165 187 213 220
Эластичность по отскоку, % 57 53 51 50 49 33 31 48 45 41 52
Динамический модуль упругости, МПа 7,0 6,9 6,8 6,7 6,4 4,5 3,6 3,7 6,5 6,6 5,9
Тангенс угла механических потерь 0,110 0,127 0,123 0,120 0,113 0,205 0,325 0,165 0,170 0,115 0,106
Отскок баскетбольного мяча, % 125 119 112 117 111 95 79 102 112 113 110
Отскок теннисного мяча, % 122 118 122 115 109 82 62 104 110 111 123
Адгезионная прочность соединения при отрыве, МПа
- от бетона 3,0 2,8 2,5 2,3 2,3 0,7 0,5 2,7 2,4 2,0 2,0
- от дерева 2,0 1,8 1,6 1,7 1,6 0,5 0,3 1,6 1,3 1,2 1,3

Таким образом, предлагаемая композиция характеризуется повышенной седиментационной устойчивостью и позволяет получать эластичные покрытия с улучшенными динамическими, адгезионными и физико-механическими характеристиками, по сравнению с прототипом.

Композиция для покрытий, включающая олигобутадиендиол, глицерин, минеральный наполнитель, полиизоцианат, оловоорганический катализатор, 2,4,6-три-трет-бутилфенол, этилсиликат, полисульфидный олигомер - жидкие тиоколы со среднечисленной молекулярной массой 1700-5500 и вязкостью при 25°C 7,5-50 Па·с, оксид цинка, диатомит, отличающаяся тем, что композиция дополнительно содержит модифицирующую добавку - полифторированные спирты - теломеры общей формулы H(CF2-CF2)nCH2OH, где n=4-8, при следующем соотношении компонентов, мас.ч.:

Олигобутадиендиол 100
Глицерин 5-20
Минеральный наполнитель 60-100
Полиизоцианат 14-24
Оловоорганический катализатор 0,01-1,10
2,4,6-три-трет-бутилфенол 0,5-1,5
Этилсиликат 0,8-1,6
Полисульфидный олигомер 5-15
Оксид цинка 10-20
Диатомит 20-30
Модифицирующая добавка 0,4-0,6


 

Похожие патенты:
Изобретение относится к электроизоляционным лакокрасочным материалам для покрытия печатных плат и электронных изделий. .

Изобретение относится к способу получения добавки для использования в покрытиях, применяемых в строительных деталях, или в качестве поверхностной отделки для материалов, подверженных возгоранию.

Изобретение относится к композиции порошкового покрытия для нанесения истираемых покрытий, металлическому изделию, имеющему такое покрытие, истираемому изделию, содержащему субстрат и указанное покрытие, а также к порошковой проволоке, содержащей указанную композицию для покрытия.

Изобретение относится к способу нанесения покрытия на алюминиевые подложки с помощью анионного электроосаждения фосфатированной эпоксидной смолы. .
Изобретение относится к составу мастики на основе хлорсульфированного полиэтилена, предназначенного для изготовления безрулонного кровельного и гидроизоляционного покрытия с пониженной горючестью.

Изобретение относится к композиции электроосаждаемого покрытия и субстрату с покрытием из композиции электроосаждаемого покрытия. .
Изобретение относится к лакокрасочным покрытиям и касается лакокрасочных покрытий, которые имеют превосходные теплоизлучающие свойства, и способа их формирования.
Изобретение относится к противообрастательным краскам и может быть использовано в судостроительной промышленности и гидротехническом строительстве. .

Изобретение относится к полимерным строительным материалам и может быть использовано для изготовления покрытий беговых дорожек, спортивных залов, кровельных и гидроизоляционных покрытий.

Изобретение относится к полимерным строительным материалам и может быть использовано для изготовления гидроизолирующих, герметизирующих, кровельных и антикоррозионных покрытий.
Изобретение относится к способам защиты полимерных материалов от интенсивного воздействия солнечной радиации, в том числе от ультрафиолетового излучения, и может быть использовано для защиты кровельных материалов и пленок этинолевых покрытий в открытой солнцу экспозиции.

Изобретение относится к полимерным строительным материалам и может быть использовано для изготовления покрытий беговых дорожек, спортивных залов, кровельных и гидроизоляционных покрытий.

Изобретение относится к способам получения композиций, предназначенных для изготовления покрытий беговых дорожек, спортивных залов, кровельных и гидроизоляционных покрытий.

Изобретение относится к способам получения композиций, предназначенных для изготовления покрытий беговых дорожек, спортивных залов, кровельных и гидроизоляционных покрытий.
Изобретение относится к композициям для покрытий на основе жидких углеводородных каучуков для изготовления кровельных покрытий, гидроизоляции строительных сооружений, трубопроводов и конструкций.
Изобретение относится к каучуковым покрытиям на основе жидких углеводородных каучуков, предназначенным для устройства покрытий преимущественно для спортивных площадок, полов, кровельных и изоляционных покрытий в строительстве.

Изобретение относится к композициям для спортивных покрытий на основе жидких углеводородных каучуков для изготовления покрытий беговых дорожек и спортивных площадок
Наверх