Устройство для классификации последовательности цифровых сигналов



Устройство для классификации последовательности цифровых сигналов
Устройство для классификации последовательности цифровых сигналов
Устройство для классификации последовательности цифровых сигналов
Устройство для классификации последовательности цифровых сигналов
Устройство для классификации последовательности цифровых сигналов
Устройство для классификации последовательности цифровых сигналов

 


Владельцы патента RU 2453915:

Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации (RU)

Изобретение относится к вычислительной технике, предназначено для определения закона распределения случайных величин и может быть использовано в системах цифровой обработки сигналов для классификации последовательности цифровых данных по заданным эталонным законам распределения. Технический результат - сокращение затрат времени и ресурсов на классификацию последовательности цифровых сигналов по нескольким эталонным законам распределения. Устройство для классификации последовательности цифровых сигналов содержит аналогово-цифровой преобразователь, n компараторов, первый дешифратор, n счетчиков, первый блок памяти, дешифратор, второй блок памяти. Новым является изменение структуры первого блока памяти, введение регистра, второго дешифратора, третьего дешифратора, генератора тактовых импульсов. Устройство для классификации последовательности цифровых сигналов позволяет классифицировать последовательность цифровых сигналов по нескольким заданным эталонным законам распределения и обеспечивает уточнение заданных эталонов в процессе работы. 4 ил., 2 табл.

 

Изобретение относится к вычислительной технике, предназначено для определения закона распределения случайных величин и может быть использовано в системах цифровой обработки сигналов для классификации последовательности цифровых данных по заданным эталонным законам распределения.

Известно устройство (Авторское свидетельство СССР №830399, МПК G06F 15/36), содержащее аналого-цифровой преобразователь, информационный вход которого является входом устройства, а управляющий вход соединен с первым выходом блока управления, блок памяти и комбинационный сумматор, выход которого подключен к первому информационному входу блока памяти, второй информационный вход которого соединен с выходом аналого-цифрового преобразователя, управляющий вход - со вторым выходом блока управления, а выход блока памяти подключен к входу комбинационного сумматора.

Недостатками данного устройства являются сложность и низкое быстродействие, так как реализация алгоритма требует большого количества последовательных операций.

Известен также статистический анализатор (Авторское свидетельство СССР №1310842, МПК G06F 15/36), содержащий аналого-цифровой преобразователь, блок сравнения, регистры, блок памяти. Кроме того устройство содержит синхронизатор, сумматор, счетчик, демультиплексор, элементы ИЛИ.

Недостатками данного устройства являются функциональная сложность и, как следствие, низкое быстродействие.

Наиболее близким по технической сущности к заявляемому изобретению является устройство для классификации последовательности цифровых сигналов (Патент РФ №2268485, МПК G06F 17/18), содержащее аналого-цифровой преобразователь, n компараторов, дешифратор, n счетчиков, два блока памяти. Первые входы компараторов являются входом устройства, вторые входы компараторов соединены с выходом первого блока памяти. Выходы компараторов соединены с входами дешифратора, выходы которого соединены с входами счетчиков. Выходы счетчиков соединены с входами второго блока памяти, с выхода которого считывается найденная вероятность принадлежности последовательности к эталонному закону распределения.

Недостатком данного устройства является невозможность классификации сигналов по нескольким эталонным законам распределения без перенастройки устройства. Вариант применения нескольких устройств, настроенных на различные эталонные законы распределения, значительно и необоснованно повышает ресурсоемкость решения задачи классификации (устройства одинаково просчитывают одни и те же данные, разница заключается только в используемом для сравнения эталоне). Также недостатком данного устройства является затрудненность оперативного уточнения эталона для обеспечения наиболее адекватного отражения им закона распределения классифицируемых последовательностей - для этого также требуется перенастройка устройства.

Целью изобретения является сокращение затрат времени и ресурсов на классификацию последовательности цифровых сигналов по нескольким эталонным законам распределения.

Поставленная цель достигается тем, что в устройство для классификации последовательности цифровых сигналов, содержащее аналогово-цифровой преобразователь, первый блок памяти, n счетчиков, n компараторов и дешифратор, второй блок памяти, предназначенный для хранения значений вероятностей в соответствии с эталонным законом распределения, первые входы компараторов соединены с выходом аналого-цифрового преобразователя, вторые входы компараторов соединены с выходом первого блока памяти, выходы компараторов соединены с входами дешифратора, выходы которого соединены со входами счетчиков, выходы счетчиков соединены со входами второго блока памяти, вход аналого-цифрового преобразователя является входом устройства, согласно изобретению введены регистр, обеспечивающий хранение элементов входной последовательности, вход которого соединен с выходом аналого-цифрового преобразователя, выход регистра соединен с первыми входами компараторов и входом третьего дешифратора, второй дешифратор, обеспечивающий выбор максимального значения из рассчитанных вероятностей и номера соответствующего ей эталона, вход которого соединен с выходом второго блока памяти, выход соединен со входом третьего дешифратора, выход является выходом устройства, третий дешифратор, обеспечивающий уточнение заданных эталонов в первом блоке памяти, вход которого соединен с выходом регистра, выходом первого блока памяти и выходом второго дешифратора, выход третьего дешифратора соединен со входом первого блока памяти, генератор тактовых импульсов, обеспечивающий синхронизацию работы устройства, а первый блок памяти устройства обеспечивает хранение эталонных значений величин в соответствии с несколькими законами распределения.

Сравнительный анализ с прототипом показывает, что заявляемое устройство отличается наличием новых элементов: регистра, второго дешифратора, третьего дешифратора, генератора тактовых импульсов, а также измененной структурой первого блока памяти, с соответствующими связями.

Таким образом, изобретение соответствует критерию «Новизна».

Анализ известных технических решений в исследуемой и смежных областях позволяет сделать вывод, что введенные функциональные узлы известны. Однако введение их в известное устройство с указанными связями придает ему новые свойства. Введенные функциональные узлы взаимодействуют таким образом, что позволяют повысить функциональные возможности устройства, его быстродействие и результативность работы за счет обеспечения классификации входных последовательностей в соответствии с несколькими заданными эталонами и обеспечения рекурсивного уточнения заданных эталонов в процессе работы устройства.

Таким образом, изобретение соответствует критерию «Изобретательский уровень», так как оно для специалиста явным образом не следует из уровня техники.

Изобретение может быть использовано в системах цифровой обработки сигналов для классификации последовательностей цифровых данных по заданным эталонным законам распределения.

Таким образом, изобретение соответствует критерию «Промышленная применимость».

На фиг.1 представлена структурная электрическая схема устройства, на фиг.2 представлено графическое изображение концептуальной модели по выборочным данным, на фиг.3 представлен ключ построения концептуальной модели по выборочным данным, на фиг.4 представлен способ формирования кода на основе общего вариационного ряда для рассматриваемого примера.

Устройство для классификации последовательности цифровых сигналов (фиг.1) содержит аналогово-цифровой преобразователь 1, регистр 2, n компараторов 3, первый дешифратор 4, n счетчиков 5, первый блок 6 памяти, второй дешифратор 7, второй блок 8 памяти, третий дешифратор 9, генератор тактовых импульсов 10. Вход аналогово-цифрового преобразователя 1 является входом устройства, выход соединен с входом регистра 2. Регистр 2 соединен с первыми входами компараторов 3 и входом дешифратора 9. Вторые входы компараторов 3 соединены с выходом блока 8 памяти, с которого считываются эталонные значения для сравнения. Выходы компараторов 3 соединены с входами дешифратора 4, выходы которого соединены с входами счетчиков 5. Выходы счетчиков 5 соединены со входами блока 6 памяти, с выхода которого считывается найденная вероятность и поступает на вход дешифратора 7. Выход дешифратора 7 соединен со входом дешифратора 9 и также является выходом устройства, обеспечивает выдачу максимального рассчитанного значения вероятности и номера соответствующего ей эталона. Генератор тактовых импульсов 10 синхронизирует работу элементов устройства.

Устройство для классификации последовательности цифровых сигналов работает следующим образом.

До поступления на вход устройства классифицируемой последовательности в блок 8 памяти вводятся эталонные значения величин, относящихся к законам распределения, соответствие с которыми определяется (m эталонов). Аналоговая последовательность, после оцифровки в аналого-цифровом преобразователе 1, поступает на вход регистра 2. Регистр 2 обеспечивает сохранение последовательности во внутренней памяти и выдачу ее элементов на первые входы компараторов 3 в соответствии с сигналами генератора тактовых импульсов 9. Объем памяти регистра определяется длиной исследуемой последовательности. С выхода регистра 2 исследуемые величины последовательно поступают на вход дешифратора 9 и на первые входы компараторов 3, на вторые входы которых последовательно поступают эталонные значения величин, относящихся к закону распределения (эталону), соответствие с которым определяется. При превышении исследуемого значения над эталонным компаратор вырабатывает 1, в противном случае - 0. Количество компараторов определяется длиной исследуемой последовательности. Выходы компараторов соединены со входами дешифратора 4, таблица преобразования которого приведена в таблице 1 (на примере 6-ти входных значений в последовательности).

Таблица 1
Таблица преобразования дешифратора 4 (на примере 6 входных значений)
Входные последовательности Выходные последовательности
011111 100000
001111 010000
000111 001000
000011 000100
000001 000010
000000 000001

Выходы дешифратора 4 соединены со входами счетчиков 5, осуществляющих поразрядный подсчет результатов оценки последовательности. Сигналы генератора тактовых импульсов 9 обеспечивают функционирование счетчиков в процессе поразрядного подсчета, а также их приведение в исходное состояние для обработки следующего эталона.

Выходы счетчиков соединены со входами блока 6 памяти, таблица преобразования которого приведена в таблице 2 (на примере 6-ти входных значений в последовательности).

Таблица 2
Таблица преобразования блока 6 памяти (на примере 6 входных значений)
Входная последовательность Вероятность отнесения к эталонному закону распределения
6000000 0.018
5100000 0.073
4200000 0.118
4110000 0.251
3300000 0.263
3210000 0.531
3111000 0.591
2220000 0.648
2211000 0.888
2111100 0.991
1111110 0.999

Дешифратор 7 обеспечивает выбор максимального значения из рассчитанных вероятностей, обладает встроенной памятью, в которой сохраняются максимальное из рассчитанных значений вероятности и номер соответствующего ей эталона. Вероятность, рассчитанная блоком 6 памяти по первому эталону, сохраняется в памяти дешифратора, также в памяти сохраняется номер эталона. Каждое последующее рассчитанное блоком 6 памяти значение вероятности сравнивается со значением, сохраненным в памяти дешифратора 7, если рассчитанное значение больше, то осуществляется перезапись значения вероятности и номера соответствующего ей эталона в памяти дешифратора 7. Выход дешифратора 7 является выходом устройства и обеспечивает по сигналу генератора тактовых импульсов 9 выдачу значения вероятности и номера соответствующего ей эталона.

Блок 8 памяти обеспечивает хранение эталонных значений величин по нескольким эталонам, соответствующих исследуемым законам распределения, и их последовательную выдачу в соответствии с сигналами генератора тактовых импульсов 10, корректировка заданных эталонов производится по завершении полного цикла работы устройства на основании выходных данных дешифратора 9 в соответствии с сигналом генератора тактовых импульсов 10.

Дешифратор 9 обеспечивает уточнение эталонов в блоке 8 памяти, обладает встроенной памятью. Во встроенной памяти дешифратора 9 сохраняется входная последовательность, поступающая на вход из регистра 2, а также данные, необходимые для рекурсивного уточнения эталонов. По сигналу генератора тактовых импульсов 10 на вход из дешифратора 7 поступает номер эталона, соответствующего классифицируемой последовательности, а также значение вероятности и обеспечивается считывание данного эталона из блока 8 памяти. При реализации операции уточнения эталона устройство работает как адаптивный линейный сумматор (Адаптивные фильтры: Пер. с англ. / Под ред. К.Ф.Н.Коуэна и П.М.Гранта. - М: Мир, 1988. - 392 с.). Дешифратор 9 выступает в качестве блока адаптации, блок 8 памяти с заданным эталоном является адаптивным фильтром размерности n (определяемой количеством элементов в эталоне). Уточнение эталона производится с использованием метода наименьших квадратов (Уидроу Б., Стирнз С. Адаптивная обработка сигналов: Пер. с англ. - М.: Радио и связь, 1989. - 440 с.: ил.). Данный метод не требует операций возведения в квадрат, усреднения и вычисления производных, поэтому является достаточно удобным и эффективным при реализации в устройстве. При расчете на k-ом шаге работы алгоритма в соответствии с положениями метода наименьших квадратов используются следующие исходные данные:

Xk - вектор отсчетов входного сигнала (входная классифицируемая последовательность);

Wk - вектор весовых коэффициентов (эталонная последовательность);

ykрасп - выходной сигнал (значение вероятности, рассчитанное по корректируемому эталону);

dk=1 - образцовый сигнал.

Сигнал ошибки с временным индексом к вычисляется следующим образом:

Формула алгоритма метода наименьших квадратов, которая используется для рекурсивного обновления эталонов, имеет вид:

где µ - параметр сходимости алгоритма, который определяет скорость и устойчивость процесса адаптации.

Уточненный эталон записывается в блок 8 памяти.

В зависимости от характера классифицируемых последовательностей дешифратор 9 может быть настроен на использование модификаций метода наименьших квадратов, направленных на ускорение сходимости либо на уменьшение числа арифметических операций.

Генератор тактовых импульсов 10 обеспечивает синхронизацию элементов устройства на трех частотах: f1 - частота, соответствующая одному полному циклу работы устройства (сравнение входной последовательности из n элементов по m эталонам); f2 - частота, обеспечивающая цикл сравнения входной последовательности по m-ому эталону (f1=f2/m); f3 - частота, обеспечивающая обработку каждого n-ого элемента входной последовательности (f1=f3/(m*n)). Импульс f1 обеспечивает выдачу дешифратором 7 рассчитанного значения вероятности, номера соответствующего ей эталона, уточнение данного эталона дешифратором 9, запись уточненного эталона в блок 8 памяти. Импульс f2 обеспечивает подключение записанной в памяти регистра 2 входной последовательности для сравнения с новым эталоном; подключение следующего эталона для сравнения в блоке 8 памяти; приведение счетчиков 5 в исходное состояние для обеспечения сравнения с новым эталоном. Импульс f3 обеспечивает проведение последовательных операций для каждого элемента входной последовательности, поступающей из регистра 2.

Многие практические задачи обнаружения, распознавания, классификации, идентификации в различных областях науки и техники сводятся к статистической проверке гипотез. При этом наиболее мощные критерии основаны на статистиках мер рассогласования плотностей распределений, определяемых как функции от отношения правдоподобий Кульбака, χ-квадрат, Питмена.

Однако практическое применение этих статистик связано со следующими трудностями:

- отсутствие аналитических моделей для распределений статистик при малых выборках;

- высокие вычислительные затраты, необходимые для формирования статистик;

- необходимость удовлетворения требованиям разбиения вариационного ряда на число интервалов (не менее 8-10) и количество элементов в интервалах (не менее 50-60), что не всегда возможно при малых объемах выборки.

Отнесение последовательности к известному классу осуществляется путем последовательного сравнения входных значений и значений, соответствующих известному закону распределения и хранящихся в блоке 8 памяти.

Теоретической основой правомерности таблицы преобразования, которая приведена в таблице 2, является концептуальная модель канонического представления пар распределений и статистики мер рассогласования плотностей распределений с использованием данной модели, изложенная в (Борисоглебская, Л.Н. Критерий принятия решений, основанный на кодах, в задачах обнаружения и распознавания, ж. Телекоммуникации, №7, 2001 г.).

Концептуальная модель представляет собой выражение одного закона распределения через другой закон , или проекцию закона на закон .

Графическое изображение и ключ построения концептуальной модели по выборочным данным приведены на фиг.2, фиг.3.

Выражения для вычисления статистик мер рассогласования по Кульбаку (ΔI, ΔI*), хи-квадрат (Δχ2), Питмену (Δp) с использованием концептуальной модели имеют вид

где n1 и n2 - объемы первой и второй выборок; Jν1=1 при ν1≠0 и Jν1=0 при ν1=0; ν1 - число элементов второй выборки, находящихся между (i-1)-й и i-й порядковыми статистиками вариационного ряда первой выборки.

Если определить последовательность значений ν1, ν2, …, ν6 как код конкретной концептуальной модели, то для приведенного примера (фиг.3) код определяется в виде 101231.

Способ формирования кода показан на фиг.4, где представлен общий вариационный ряд для рассматриваемого примера. На оси X символом ″х″ обозначены значения элементов первой выборки и символом ″•″ - значения второй выборки.

В связи с аддитивностью функций статистик их значения будут одинаковыми для всевозможных перестановок. Например, концептуальные модели с кодами 110231; 231110; 312110 и т.д. будут иметь одинаковые значения статистик. Число всевозможных концептуальных моделей с одинаковым значением статистик определяется числом перестановок в коде и представляется формулой

Понятие числового значения кода определяется как число с (n1+1) разрядом и основанием позиций n2, т.е. как код, упорядоченный по убыванию значащих разрядов, начиная со старшего разряда.

Исследования показали на существование связи между значениями упорядоченного кода и статистик, вычисленных для концептуальной модели. При этом моделям с большим числовым значением кодов соответствуют большие значения статистик.

Необходимым условием возможности принятия решений является знание распределения статистик. Исходя из сказанного выше, предлагается критерий принятия решений, основанный на кодах, что позволяет отказаться от расчетов по приведенным выше формулам (3)-(6).

Таким образом, определение закона распределения случайных величин осуществляется путем сортировки и соотнесения их в интервалы эталонных выборок, что исключает операции сложения, умножения, деления и т.п., и требует существенно меньших вычислительных затрат.

Для технической реализации устройства для классификации последовательности цифровых сигналов использован аналогово-цифровой преобразователь иностранного производства типа AD9054ABST-200, регистр, дешифраторы, компараторы, счетчики, второй блок памяти и генератор тактовых импульсов реализованы на перепрограммируемых логических интегральных схемах XC2S200E с памятью хранения структуры схемы XCF02S - фирмы XILINX, первый блок памяти реализован на постоянном запоминающем устройстве Т27С1024.

Устройство для классификации последовательности цифровых сигналов, по сравнению с прототипом, позволяет сократить затраты времени и ресурсов на классификацию последовательности цифровых сигналов, так как устройство обеспечивает классификацию входной последовательности по нескольким заданным эталонным законам распределения без его перенастройки и обеспечивает уточнение заданных эталонных законов.

Устройство для классификации последовательности цифровых сигналов, содержащее аналогово-цифровой преобразователь, первый блок памяти, n счетчиков, n компараторов и дешифратор, второй блок памяти, предназначенный для хранения значений вероятностей в соответствии с эталонным законом распределения, первые входы компараторов соединены с выходом аналого-цифрового преобразователя, вторые входы компараторов соединены с выходом первого блока памяти, выходы компараторов соединены с входами дешифратора, выходы которого соединены со входами счетчиков, выходы счетчиков соединены со входами второго блока памяти, вход аналого-цифрового преобразователя является входом устройства, отличающееся тем, что введены регистр, обеспечивающий хранение элементов входной последовательности, вход которого соединен с выходом аналого-цифрового преобразователя, выход регистра соединен с первыми входами компараторов и входом третьего дешифратора, второй дешифратор, обеспечивающий выбор максимального значения из рассчитанных вероятностей и номера соответствующего ей эталона, вход которого соединен с выходом второго блока памяти, выход соединен со входом третьего дешифратора, выход является выходом устройства, третий дешифратор, обеспечивающий уточнение заданных эталонов в первом блоке памяти, вход которого соединен с выходом регистра, выходом первого блока памяти и выходом второго дешифратора, выход третьего дешифратора соединен со входом первого блока памяти, генератор тактовых импульсов, обеспечивающий синхронизацию работы устройства, а первый блок памяти устройства обеспечивает хранение эталонных значений величин в соответствии с несколькими законами распределения.



 

Похожие патенты:

Изобретение относится к области информационно-измерительной и вычислительной техники, предназначена для вычисления и индикации усредненной на 1-минутном интервале мощности потерь электроэнергии, а также может быть использована в качестве счетчиков потерь электроэнергии.

Изобретение относится к специализированным средствам вычислительной техники и может быть использовано в системах, в которых требуется аппаратная реализация алгоритмов оценки среднеквадратического отклонения дискретных сигналов, например, при оценке уровня шума и пороговом обнаружении.

Изобретение относится к судовождению и предназначено для оперативной идентификации математической модели судна в реальном масштабе времени. .

Изобретение относится к области создания навигационных приемников, а также средств автономного контроля навигационных сигналов спутниковых систем ГЛОНАСС, GPS и др.

Изобретение относится к сфере измерительной техники и системам тестирования технических устройств. .

Изобретение относится к специализированным средствам вычислительной техники и может быть использовано в системах, в которых требуется аппаратная реализация алгоритмов цифровой фильтрации сигналов, например, при оценке уровня нуля на фоне импульсных сигналов/помех или в условиях несимметричного относительно уровня нуля ограничения динамического диапазона.

Изобретение относится к информационно-измерительным устройствам и может быть использовано в вычислительной технике, в системах управления и обработки сигналов. .

Изобретение относится к области информационно-измерительной и вычислительной техники и может быть использовано для определения начальных моментов любого порядка случайной величины, а также любой функции от случайного аргумента.

Изобретение относится к технологии представления сигналов. .

Изобретение относится к устройствам моделирования зерна пленки. .

Изобретение относится к вычислительной технике и может быть использовано для анализа взаимосвязи субъективных ответов респондента с его частотой сердечных сокращений (ЧСС) в процессе производимого тестирования, которая характеризует его психологическое состояние

Изобретение относится к вычислительной технике и может быть использовано для оценки функционирования однотипных организаций с целью выработки рекомендаций по улучшению качества их работы. Техническим результатом является расширение функциональных возможностей за счет учета взаимодействия с другими уровнями структуры, что позволит повысить точность и эффективность оценки. Устройство содержит группу входных регистров, два блока индикации, блок выделения максимального числа, две группы блоков вычитания, группу квадраторов, три группы элементов задержки, группу сумматоров, блок извлечения квадратного корня, две группы коммутаторов, группу выходных регистров, генератор тактовых импульсов, распределитель импульсов, группу элементов ИЛИ, S групп регистров. 3 ил.

Изобретение относится к области информационно-измерительной и вычислительной техники и предназначено для вычисления и индикации усредненной на 1-минутном интервале мощности потерь электроэнергии, а также может быть использовано в качестве счетчика-регистратора потерь электроэнергии за каждый час, сутки, месяц. Технический результат заключается в расширении функциональных возможностей устройства за счет возможности непрерывного контроля и регистрации мощности потерь электроэнергии от каждой гармонической составляющей тока нагрузки. Технический результат достигается за счет того, что в первом варианте реализации устройство содержит первый-четвертый датчики тока (ДТ) фаз сети "А", "В", "С" и нулевого провода "N", первый и второй датчики температуры, генератор прямоугольных импульсов (ГПИ), микроконтроллер (МК), регистр, цифровой индикатор (ЦИ), первый и второй приемопередатчики, постоянное запоминающее устройство (ПЗУ), компьютер; во втором варианте реализации устройство содержит первый-четвертый (ДТ), первый-пятый датчики температуры, ГПИ, МК, регистр, ЦИ, первый и второй приемопередатчики, ПЗУ, компьютер. 2 н.п. ф-лы, 2 ил.

Изобретение относится к классификации биомолекулярных данных. Техническим результатом является повышение надежности классификации. Предусмотрена система (100) классификации для классификации биомолекулярных данных. Вход системы принимает множество признаков (102) выборки, которая должна быть классифицирована, и множество соответствующих оценок (104) ошибок. Статистический модуль (106) ассоциирует функции (108) плотности распределения вероятностей с признаками, при этом соответствующие функции плотности распределения вероятностей зависят от оценок ошибок. Модуль (110) репликации формирует множество возмущенных реплик (112) выборки, при этом признаки являются произвольно возмущенными согласно соответствующим надлежащим функциям плотности распределения вероятностей. Классификатор (114) классифицирует возмущенные реплики на основе возмущенных признаков. Анализатор (118) классифицирует выборку, которая должна быть классифицирована, на основе статистического анализа классифицированных реплик (116), чтобы получать классификацию (120) выборок. 3 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к области информационно-измерительной и вычислительной техники. Техническим результатом является расширение функциональных возможностей регистратора за счет возможности непрерывного контроля и регистрации усредненных значений потерь мощности, напряжения сети и тока нагрузки. Технический результат достигается благодаря тому, что регистратор содержит датчик тока, датчик напряжения сети, первый и второй входные преобразователи, микроконтроллер, датчик температуры окружающей среды, датчик температуры проводника, генератор прямоугольных импульсов, первый и второй компараторы, первый, второй и третий приемопередатчики, цифровой индикатор, постоянное запоминающее устройство, компьютер. 1 з.п. ф-лы, 2 ил.

Изобретение относится к мониторингу объектов атомной энергетики. Технический результат - определение оценки риска объекта атомной энергетики. Устройство для мониторинга риска содержит запоминающее устройство для хранения, по меньшей мере, одного набора минимальных сечений отказов МСО и значений вероятностей каждого события в каждом МСО и устройство ввода информации, выполненное с возможностью ввода в него информации об изменениях состояния объекта; блок формирования, по меньшей мере, одной матрицы МСО; запоминающее устройство для хранения указанной, по меньшей мере, одной матрицы МСО; блок формирования, по меньшей мере, одной параметрической матрицы; запоминающее устройство для хранения указанной, по меньшей мере, одной параметрической матрицы; блок изменения элементов указанной, по меньшей мере, одной параметрической матрицы; и блок оценки риска. 3 н. и 10 з.п. ф-лы, 2 ил.

Изобретение относится к области информационно-измерительной и вычислительной техники, в частности к интеллектуальной микропроцессорной системе контроля и регистрации потерь электроэнергии в присоединениях распределительного устройства. Техническим результатом изобретения является расширение функциональных возможностей системы за счет возможности непрерывного контроля и регистрации мощности потерь электроэнергии в нескольких присоединениях распределительного устройства. Технический результат достигается благодаря тому, что система содержит первый - n-й (где n - число присоединений распределительного устройства) датчики тока присоединений распределительного устройства, первый - n-й буферные масштабные усилители, многовходовой аналоговый коммутатор, двухполупериодный прецизионный выпрямитель, датчик температуры окружающей среды, генератор прямоугольных импульсов, микроконтроллер, первый - n-й датчики температуры проводников присоединений, первый, второй и третий приемопередатчики, цифровой индикатор, постоянное запоминающее устройство, компьютер. 1 ил.

Изобретение относится к устройству для моделирования каталога разведки разнотипных подвижных объектов. Технический результат заключается в расширении функциональных возможностей путем обеспечения моделирования каталога разведки разнотипных подвижных объектов. Устройство содержит два генератора тактовых импульсов, датчик случайных чисел, блок расчета вероятности обнаружения подвижного объекта, блок сравнения, регистр сдвига, блок расчета размеров подвижного объекта, блок расчета квадратов отклонений размеров подвижного объекта, блок определения типа подвижного объекта, блок расчета координат подвижного объекта, регистр памяти. 1 ил.

Изобретение относится к области вычислительной техники и может быть использовано для оценки надежности и качества функционирования сложных автоматизированных и гибких производственных и телекоммуникационных систем произвольной структуры, в которых используется циклический характер производства, предоставления телекоммуникационных услуг и временное резервирование. Техническим результатом является моделирование текущих состояний в условиях, присущих реальному процессу функционирования исследуемой системы, а именно в условиях динамики смены параметров этих состояний с учетом влияющих факторов, повышение достоверности идентификации состояния безотказной работы и отказа системы с учетом изменяющегося значения оперативного времени на основе динамически корректируемых значений времени выполнения сменного задания на каждом модельном элементе участка системы. Устройство содержит блок управления, блок модели системы, блок имитаторов состояний участков системы, блок формирования сигналов отказов, блок регистрации, блок проверки данных модели, блок коррекции данных модели, N≥2 контроллеров оперативного времени модельных элементов, главный контроллер оперативного времени. 2 з.п. ф-лы, 12 ил.

Изобретение относится к вычислительной технике и может быть использовано для управления равновесным случайным процессом (РСП). Техническим результатом является оптимизация режима управления. Способ заключается в том, что: выделяют для РСП его характеристики, которые рассматривают в качестве координат фазового пространства, в котором протекает РСП; строят для исследуемого РСП в соответствии с априорной информацией о нем эволюционно-симулятивную модель (ЭСМ), взаимно увязывающую координаты фазового пространства, и загружают построенную ЭСМ в память процессорного устройства; выделяют один из расчетных показателей в качестве целевого показателя и исключают его из координат фазового пространства; измеряют с помощью соответствующих датчиков характеристики исследуемого РСП и вводят их в память процессорного устройства в качестве входных сигналов для ЭСМ; находят конкретные значения расчетных показателей для каждого допустимого набора управляющих воздействий и каждого момента воздействия; связывают наборы управляющих воздействий логическими связями; загружают в память процессорного устройства установленные логические связи между управляющими воздействиями и их предельные значения; находят с помощью алгоритма динамического программирования для решения булевых задач, загруженного в память процессорного устройства, оптимальное управление в виде однозначно определенных наборов управляющих воздействий в каждый момент воздействия на весь период управления. 1 з.п. ф-лы.
Наверх