Способ формирования директорного управления по эталонным сигналам модели объекта



Способ формирования директорного управления по эталонным сигналам модели объекта
Способ формирования директорного управления по эталонным сигналам модели объекта
Способ формирования директорного управления по эталонным сигналам модели объекта

 


Владельцы патента RU 2454693:

Государственное образовательное учреждение высшего профессионального образования Московский авиационный институт (государственный технический университет) (МАИ) (RU)

Изобретение относится к способам управления траекторией самолета по директорному прибору. Технический результат заключается в повышении быстродействия, точности и простоты управления для человека-оператора за счет устранения помех и возмущений при директорном управлении. В способе измеряют отклонения штурвала, формируют на основе сигналов этих измерений и модели движения объекта эталонные сигналы, на основе которых формируют сигналы директорного прибора, формируют разностные сигналы отклонений сигналов координат объекта от соответствующих эталонных сигналов модели, на их основе формируют сигналы стабилизации координат объекта относительно соответствующих эталонных сигналов модели и суммируют сигналы стабилизации координат объекта с сигналами управления объектом от штурвала, отклоняемого человеком-оператором, при приведении меток в заданное положение. 3 ил.

 

Изобретение относится к способам формирования управления динамическими объектами по директорному прибору, когда человек-оператор отклоняет штурвал управления объектом, стремясь привести метки (стрелки) этого прибора в заданное положение, при котором управляемая координата объекта соответствует заданному значению. В качестве объекта может быть, например, летательный аппарат, когда летчику необходимо с помощью отклонения штурвала управлять траекторией самолета по директорному прибору.

Известен [1] способ (прототип) формирования директорного управления, заключающийся в том, что задают требуемые значения выходных координат объекта, измеряют координаты объекта, формируют сигналы директорного прибора, преобразуют их в отклонения меток (стрелок) директорного прибора, перемещают метки отклонением штурвала (рычага) управления объектом в заданное положение.

К недостатку прототипа относится сложность директорного управления при наличии помех датчиков измерений координат объекта, а также возмущений, действующих на объект, которые приводят к значительным колебаниям и дрожанию меток, крайне неприятным для восприятия полезной составляющей человеком-оператором, что приводит к напряженной работе и неточности управления. Фильтрация этих помех и возмущений традиционными методами приводит к увеличению инерционности внутреннего контура управления, где присутствует человек-оператор, отклоняющий штурвал, что в свою очередь приводит к резкому ухудшению динамики системы и соответственно к неточности управления.

Отличие от прототипа состоит в том, что измеряют отклонения штурвала (или усилия на нем), формируют на основе сигналов этих измерений и модели движения объекта эталонные сигналы, на основе которых формируют сигналы директорного прибора, формируют разностные сигналы отклонений сигналов координат объекта от соответствующих эталонных сигналов модели, на их основе формируют сигналы стабилизации координат объекта относительно соответствующих эталонных сигналов модели и суммируют сигналы стабилизации координат объекта с сигналами управления объектом от штурвала, отклоняемого человеком-оператором, при приведении меток в заданное положение.

Такая последовательность действий над сигналами позволяет исключить попадание помех и возмущенных значений координат объекта на директорный прибор, фактически обеспечивая для человека-оператора эталонное директорное управление виртуальным объектом (его моделью) без помех и возмущений. Стабилизация возмущенных координат объекта относительно эталонного движения виртуального объекта (его модели), задаваемого человеком-оператором, осуществляется автоматически за счет разностных сигналов.

Суть изобретения поясняется фиг.1, где изображена общая схема предлагаемого способа формирования директорного управления; на фиг.2 представлена конкретизированная схема директорного управления высотой полета самолета; на фиг.3 представлены процессы изменения всех координат при стендовом моделировании директорного управления высотой полета самолета.

Принятые обозначения:

1 - объект (объект управления с исполнительными устройствами или подсистемами);

2 - вычислитель сигналов управления;

3 - штурвал;

4 - человек-оператор;

5 - директорный прибор (ДП)

6 - модель движения объекта (виртуальный объект);

7 - блок корректирующих устройств;

8, 9, 10, - первое, второе и третье корректирующие устройства разностных сигналов (nу_nум), (Vу-Vум), (H-Hм) соответственно;

11 - система штурвального управления (СШУ);

12 - передаточная функция объекта от нормальной перегрузки до вертикальной скорости W0(s)=Vу(s)/nу(s)=9.81/s, где s - оператор преобразования Лапласа;

13 - передаточная функция объекта от вертикальной скорости до высоты W1(s)=1/s;

14 - модель системы штурвального управления (МСШУ);

15, 16 - передаточные функции как в блоках 12, 13 соответственно;

Yз - заданные значения выходных координат объекта 1;

Y - координаты объекта 1;

Xш - отклонения штурвала 3;

Xз - заданные значения отклонений штурвала 3;

Uдп - сигналы директорного прибора 4;

Uстаб - сигналы стабилизации объекта 1;

Yм - эталонные сигналы модели движения объекта (виртуального объекта) 6;

f - возмущающие воздействия;

νY - помехи измерений;

H - высота полета самолета;

Hз - заданное значение высоты полета самолета;

Hм=Hm - эталонный сигнал высоты полета;

Vу - вертикальная скорость самолета;

Vум - эталонный сигнал вертикальной скорости;

Vуз - сигнал заданного значения вертикальной скорости;

dVу/dt - вертикальное ускорение;

nу - нормальная перегрузка самолета;

nум - эталонный сигнал нормальной перегрузки;

δ - отклонение рулей высоты;

ωz - угловая скорость самолета;

(α+αw) - угол атаки;

αw - возмущающая ветровая составляющая угла атаки;

Mz воз/Jz - угловое ускорение самолета от возмущающего момента;

νn, νv, νH - помехи в сигналах координат объекта.

Последовательность действий по способу заключается в следующем.

Измеряют отклонения Xш штурвала 3 (или усилия, прикладываемые к нему человеком-оператором 4) [4] и подают сигналы этих отклонений на модель движения объекта 6 (вычислитель эталонных сигналов координат объекта в предположении отсутствия помех и возмущений).

Сигналы координат модели движения объекта 6 (как эталонные сигналы координат объекта) и сигналы отклонений Xш штурвала 3 подают в вычислитель 2 вместе с сигналами заданных значений выходных координат объекта Y3.

В вычислителе 2 сигналы усиливают, суммируют, формируют сигналы директорнго прибора Uдп и подают их на директорный прибор (ДП) 5, где они преобразуются в отклонения меток.

Коэффициенты усиления входных сигналов вычислителя 2 выбирают из требований по качеству процессов управления моделью движения объекта (виртуальным объектом) 6 с учетом инерционности человека-оператора 4.

Указанные устройства совместно с человеком-оператором 4 и штурвалом 3 образуют контур эталонного управления моделью движения объекта 6 [5], в котором отсутствуют помехи, возмущения и инерционности измерителей, что резко облегчает работу человека-оператора 4, позволяет повысить быстродействие и точность директорного управления.

При управлении по директорному прибору отклонения штурвала 3 человеком-оператором 4 создают управление объектом по разомкнутому принципу [5].

Для управления по замкнутому принципу (что необходимо из-за помех и возмущений) формируют разностные сигналы отклонений координат объекта 1 от соответствующих координат модели 6. На основе разностных сигналов с помощью блока корректирующих устройств 7 формируют сигналы стабилизации объекта 1 Uстаб, которые дополнительно подают на объект 1, суммируя с сигналом отклонения штурвала 3, что обеспечивает стабилизацию координат объекта 1 относительно координат модели 6 как эталонных, создаваемых человеком-оператором 4 при удержании меток ДП 5 в заданном положении. Корректирующие устройства блока 7 выбирают исходя из возможности компенсации влияния помех и возмущений с учетом динамики системы стабилизации.

В результате происходит рациональное разделение функций человека-оператора 4 и автоматики: человек-оператор задает командный (эталонный) вектор требуемого текущего состояния объекта, а автоматика отрабатывает эту команду.

Рассмотрим предлагаемый способ на примере директорного управления высотой полета самолета.

Линеаризованные уравнения продольного движения самолета (в отклонениях координат от невозмущеннх значений) с системой штурвального управления (СШУ) при постоянной скорости полета возьмем в следующем виде

где ωz - угловая скорость самолета, (α+αw) - угол атаки, αw - ветровая составляющая угла атаки, δ - отклонение рулей высоты, Vу - вертикальная скорость, H - высота полета, Mz возм/ Jz - угловое ускорение, вызванное возмущающим моментом.

Уравнения (1)-(3) описывают приближенно систему штурвального управления (СШУ) 11 нормальной перегрузкой nу, которая на схеме фиг.2 является подсистемой в системе директорного управления высотой полета H самолета человеком-оператором (летчиком) 4.

Передаточная функция СШУ 11 от сигналов Xш или Uстаб до перегрузки nу согласно уравнениям (1)-(3) имеет вид

WСШУ(s)=-0,8/(s2+8s+8).

Передаточные функции модели СШУ (МСШУ) 14 (от сигналов Xш до nум) и корректирующих устройств 8, 9, 10 соответствующих разностных сигналов (nу-nум), (Vу-Vум), (H-Нм) имеют вид

WМСШУ(s)=-1/(s+10);

WКУ1(s)=(6s+12)/s;

WКУ2(s)=0,6(s+1)/s;

WКУ3(s)=0,18(s+1)/s.

Выходной сигнал вычислителя 2, поступающий на директорный прибор 5 согласно схеме фиг.2, равен

Uдп=0,3(H-Hз)+Vу-1,5 Xш,

или Uдп=1,5(Xз-Xш),

где 1,5Xз=0,3(H-Hз)+Vу.

В данном случае заданное положение метки является нулевым, так как требуется, чтобы отклонение штурвала Хш равнялось заданному значению Хз, когда сигнал Uдп равен нулю.

На фиг.3 представлены переходные процессы стендового моделирования директорного управления высотой полета, где показаны изменения приращений основных координат: Hз, H, Hм=Hm, Vу, dVy/dt, Хш, Uдп при случайных скачкообразных приращениях заданной высоты полета Hз, а также при возникновении возмущающего углового ускорения Mz возм/Jz=8 град/с2 на 15-ой секунде и ветрового воздействия с αw=5 градусов на 50-ой секунде эксперимента.

Как видно, возмущающие воздействия не оказывают влияния на сигнал Uдп и соответственно на поведение меток ДП 5, что облегчает человеку-оператору 4 директорное управление и позволяет получать наиболее быстрые переходные процессы длительностью меньше 10 с.

Аналогично помехи датчиков нормальных перегрузок, вертикальной скорости и высоты также не оказывают влияния на поведение меток ДП 5, так как эти сигналы не используются при формировании вычислителем 2 сигналов ДП 5 Uдп. Эксперименты показывают также, что эти процессы мало зависят от конкретного человека-оператора.

Технический результат от использования изобретения заключается в том, что способ позволяет устранить недостатки прототипа, сохранить его достоинства и существенно повысить быстродействие, точность и легкость управления для человека-оператора, так как устраняется вредное влияние помех и возмущений на качество директорного управления.

Изобретательский уровень предлагаемого способа подтверждается отличительной частью формулы изобретения, а именно добавлением к прототипу модели движения объекта и способом ее подключения, что ранее не было известно.

Литература

1. Михалев И.А., Окоемов Б.Н., Чикулаев М.С.Системы автоматической посадки. - М.: Машиностроение, 1975.

2. Красовский А.А. Системы автоматического управления полетом и их аналитическое конструирование. - М.: Главная редакция физ.-мат. литературы изд-ва «Наука», 1973.

3. Сильвестров М.М., Бегичев Ю.И., Варочко А.Г., Козиоров Л.М., Луканичев В.Ю., Наумов А.И., Чернышов В.А. Эргатические интегрированные комплексы летательных аппаратов. Под редакцией М.М.Сильвестрова. - М.: Филиал Воениздата, 2007.

4. Елисеев В.Д., Похваленский В.Л., Клюев Е.Д. О способах директорного управления динамическим объектом // Современные технологии в задачах управления, автоматики и обработки информации: Труды XVIII Международного научно-технического семинара. Алушта, сентябрь 2009. - М.: Изд. МГИРЭА, 2009.

5. Елисеев В.Д., Комаров А.К. Модально-инвариантные системы управления. Уч. пособие. - М.: Изд. МАИ, 1983.

Перечень фигур

Фиг.1. Схема директорного управления по эталонным сигналам модели объекта.

Фиг.2. Схема директорного управления высотой полета самолета.

Фиг.3. Переходные процессы стендового моделирования.

Способ формирования директорного управления по эталонным сигналам модели объекта, заключающийся в том, что задают требуемые значения выходных координат объекта, измеряют координаты объекта, формируют сигналы директорного прибора, преобразуют их в отклонения меток (стрелок) директорного прибора, перемещают метки отклонением штурвала (рычага) управления объектом в заданное положение, отличающийся тем, что измеряют отклонения штурвала (или усилия на нем), формируют на основе сигналов этих измерений и модели движения объекта эталонные сигналы, на основе которых формируют сигналы директорного прибора, формируют разностные сигналы отклонений сигналов координат объекта от соответствующих эталонных сигналов модели, на их основе формируют сигналы стабилизации координат объекта относительно соответствующих эталонных сигналов модели и суммируют сигналы стабилизации координат объекта с сигналами управления объектом от штурвала, отклоняемого человеком-оператором, при приведении меток в заданное положение.



 

Похожие патенты:

Изобретение относится к области систем автоматического управления минимально-фазовыми объектами, в частности систем управления самолетом по углу тангажа. .

Изобретение относится к электротехнике и может быть использовано в автоматизированных электроприводах доменного производства в металлургии, общем машиностроении в областях транспортирования и загрузки-выгрузки материалов.

Изобретение относится к технике автоматического управления полетом летательных аппаратов и может быть использовано для улучшения функциональных характеристик привода и для быстрой адаптации систем управления при изменении свойств объектов управления.

Изобретение относится к области управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного тока, соединенных с объектом управления вязкоупругими кинематическими связями.

Изобретение относится к системам автоматического управления электронагревателями печей для получения инфраструктуры на космических станциях. .

Изобретение относится к устройствам систем автоматического управления электронагревателями печей для получения инфраструктуры на космических станциях. .

Изобретение относится к устройствам систем автоматического управления электронагревателями печей для получения инфраструктуры на космических станциях. .

Изобретение относится к области электротехники и может быть использовано в промышленных установках для отработки позиционными электроприводами с упругим валопроводом заданных программ перемещения.

Изобретение относится к области электротехники и может быть использовано в автоматизированных электроприводах постоянного тока. .

Изобретение относится к области электротехники и может быть использовано в системе с вентильным двигателем для формирования управляющих сигналов в системе. .

Изобретение относится к области электротехники и может быть использовано в любой следящей системе с вентильным двигателем

Изобретение относится к области электротехники и может быть использовано в промышленных установках для обработки позиционными электроприводами заданных программ перемещения

Изобретение относится к электроприводам и может быть использовано при создании их систем управления

Изобретение относится к области электротехники и может быть использовано в следящих электроприводах с исполнительными двигателями постоянного тока или с синхронными машинами, работающими в режимах вентильного двигателя или бесколлекторного двигателя постоянного тока

Изобретение относится к области систем автоматического управления, в частности к технике формирования управляющих сигналов, и может найти применение в следящих системах автоматического управления и регулирования с люфтом в механической передаче. Техническим результатом настоящего изобретения является повышение точности компенсации люфта и улучшение динамических характеристик следящей системы с люфтом путем добавления сигнала коррекции, формируемого инвариантной связью по управляющему воздействию с переменной структурой. Технический результат достигается тем, что в способе автоматического управления в системе с люфтом сигнал на выходе регулятора положения суммируется с сигналом коррекции, формируемым инвариантной связью по управляющему воздействию с переменной структурой. 2 н.п. ф-лы, 14 ил.

Изобретение относится к области электротехники и может быть использовано в системе управления электроприводами. Техническим результатом является повышение быстродействия и уменьшение динамической погрешности при регулировании скорости рабочего органа в электромеханической системе с упругими связями. Электропривод содержит последовательно соединенные блок задания скорости, регулятор скорости, замкнутый контур регулирования тока с датчиком тока якоря, электромеханическую часть двигателя, рабочий орган с упругими связями, а также датчик скорости вала рабочего органа, датчик скорости вала двигателя, датчик упругого момента и датчик статической нагрузки. Регулятор скорости включает дифференцирующее звено, семь масштабирующих элементов, суммирующий элемент и интерполятор нулевого порядка. Первый масштабирующий элемент подключен к блоку задания скорости, второй масштабирующего элемента - к дифференцирующему звену, третий масштабирующий элемент - к выходу датчика статической нагрузки, четвертый масштабирующий элемент - к выходу датчика тока якоря, вход которого подключен к выходу замкнутого контура регулирования ток. Пятый масштабирующий элемент подключен к выходу датчика скорости вала двигателя, шестой масштабирующий элемент - к выходу датчика упругого момента, а седьмой масштабирующий элемент - к выходу датчика скорости вала рабочего органа. Масштабирующие элементы подключены к входам суммирующего элемента. 5 ил.

Изобретение относится к области средств автоматизации и может использоваться в системах управления технологическими процессами в химической промышленности, теплотехнике, энергетике. Технический результат - обеспечение автоматической стабилизации амплитуды автоколебаний регулируемой координаты на заданном уровне в условиях неопределенности параметров объекта и среды. Устройство относится к классу релейных регуляторов с переменным гистерезисом. Оно содержит индикатор экстремумов, нуль-орган, релейный блок, сумматоры, блок вычисления среднего значения сигнала, два интегратора, блок вычисления модуля и задатчик. 3 ил.

Изобретение относится к области систем автоматического управления. Технический результат заключается в повышении быстродействия системы управления. Это достигается тем, что предложена система управления наведением инерционного объекта, содержащая последовательно соединенные задатчик, измеритель рассогласования, сумматор, последовательно соединенные усилитель мощности, исполнительный элемент, выход которого механически связан с объектом управления, датчик скорости, вход которого механически связан с исполнительным элементом, датчик положения, вход которого механически связан с объектом управления, а выход - со вторым входом измерителя рассогласования, нуль-орган, вход которого соединен с выходом измерителя рассогласования, пороговое устройство, элемент ИЛИ, первый и второй входы которого соединены соответственно с выходом нуль-органа и выходом порогового устройства, первый блок коммутации, первый вход которого соединен с выходом измерителя рассогласования, третий управляющий вход соединен с выходом элемента ИЛИ, интегратор, вход которого соединен с выходом первого блока коммутации, а выход соединен со вторым входом первого блока коммутации и третьим входом сумматора, при этом в нее введены второй блок коммутации, первый вход которого соединен с выходом сумматора, второй управляющий вход соединен с выходом нуль-органа, а выход соединен с входом усилителя мощности, нелинейное корректирующее звено с переменной крутизной, вход которого соединен с выходом датчика скорости, а выход соединен со вторым входом сумматора и входом порогового устройства. 4 ил.

Изобретение относится к области электротехники и может быть использовано в промышленных технологических комплексах прокатного производства. Технический результат - повышение качества регулирования и снижение динамических нагрузок путем ограничения колебаний, вызванных нелинейной зависимостью момента прокатки от угловой скорости электропривода при коррекции контура тока электропривода. Автоматизированный электропривод прокатного стана содержит задатчик (1), регулятор напряжения (2), блок ограничения (3), блок регулируемого запаздывания (4), регулятор тока (5), линейное динамическое звено (6) с передаточной функцией, указанной в формуле изобретения, датчик скорости прокатки (7), усилитель мощности (8), датчик тока (9), датчик напряжения (10), двигатель постоянного тока (11). При захвате слитка валками происходит возрастание тока электрического двигателя и формирование корректирующего сигнала, действующего на входе регулятора тока и способствующего стабилизации скорости и быстрому установлению тока, необходимого для создания момента прокатки. 2 ил.

Изобретение относится к компьютерной технике. Технический результат - автоматизированное управление климатом на ограниченной территории. Устройство управления климатом, содержащее сетевой интерфейс, выполненный с возможностью принимать запрос на использование устройства управления климатом; передавать запрос авторизации к системе расчетов в ответ на прием упомянутого запроса; принимать сообщение активации, содержащее информацию, ассоциированную с системой расчетов, в ответ на запрос авторизации; передавать платежное сообщение к системе расчетов на основе множества параметров использования, причем платежное сообщение приводит к взиманию средств со счета пользователя; пользовательский интерфейс, выполненный с возможностью принимать пользовательский ввод, идентифицирующий программу управления климатом, содержащую параметр температуры, параметр влажности, параметр ионизации, параметр осушителя, параметр очистки воздуха, звуковой параметр и параметр аромата, причем каждый из упомянутых параметров ассоциирован с соответствующим одним из множества времен, множества продолжительностей и множества установленных значений; и подсистему управления климатом, выполненную с возможностью изменять окружающую среду на основе программы управления климатом. 3 н. и 10 з.п. ф-лы, 1 табл., 11 ил.
Наверх