Способ разделения фенилаланина и хлорида натрия стационарным диализом

Изобретение относится к способам очистки и выделения аминокислот, в частности к разделению фенилаланина с неизрасходованными при микробиологическом синтезе минеральными компонентами. Способ разделения фенилаланина и хлорида натрия стационарным диализом включает подачу исходного раствора с одной стороны сульфокатионообменной мембраны МК-40 с геометрически неоднородной поверхностью, а с другой ее стороны подачу дистиллированной воды. Технический результат заключается в интенсификации массопереноса фенилаланина и хлорида натрия через мембрану при стационарном диализе. 1 ил., 1 пр.

 

Изобретение относится к способам очистки и выделения аминокислот, в частности к разделению фенилаланина с неизрасходованными при микробиологическом синтезе минеральными компонентами.

Известны способы извлечения аминокислот из растворов ионным обменом [Селеменев В.Ф., Чиканов В.Н., Фрелих П. Влияние кинетики ионного обмена на получение высокочистого триптофана. // Высокочист. вещества. - 1991. №1. С.97-102; Шолин А.Ф., Селеменев В.Ф., Орос Г.Ю. и др. Исследование работы крупногабаритного ионообменного фильтра в процессе выделения кристаллического лизина из культуралъной жидкости. // Теория и практика сорбционных процессов. Воронеж, 1981. №14. С.107-110; Ионообменные методы очистки веществ. // Под ред. Г.А.Чикина, О.Н.Мягкова. Воронеж: ВГУ, 1984. 372 с.] и электромембранными методами [Заболоцкий В.И., Гнусин Н.П., Ельников Л.Ф. Исследование процесса глубокой очистки аминокислот от минеральных примесей электродиализом с ионообменными мембранами. // Журн. прикл. химии. 1986. Т.59. С.140; Sato К., Sakairi Т., Yonemoto Т., Tadaki T. The desalination of mixed solution of on amino acid and an inorganic salt by means of electrodialysis with charge-mosaic membranes // J. Membrane Sci. 1995. Vol.100. P.209-216; Шапошник В.А., Елисеева Т.В., Текучее А.Ю., Лущик И.Г. Выделение аминокислот из смесей веществ электродиализом с ионообменными мембранами. // Теория и практика сорбционных процессов. Воронеж: ВГУ, 1999. Вып.25. С.53]. При ионном обмене возникает необходимость в проведении химической регенерации ионообменников, которая приводит к загрязнению окружающей среды, а электродиализ требует затрат электроэнергии.

Известен способ разделения фенилаланина и моносахарида (глюкозы) диализом с сульфокатионообменной мембраной МК-40 [Васильева В.И., Шапошник В.А., Овчаренко Е.О., Григорчук О.В. Разделение фенилаланина и глюкозы диализом с сульфокатионообменной мембраной. // Сорбционные и хроматографические процессы. 2002. T.2. Вып.5-6. С.535-544].

Данный способ заключается в том, что используется диализная ячейка, собранная из двух секций, разделенных ионообменной мембраной с гладкой поверхностью. Исследуемый раствор подается в секцию 1, а через секцию 2 пропускают дисциллированную воду. Все эксперименты были проведены в сиационарных условиях.

К недостаткам способа можно отнести низкую скорость массопереноса веществ через мембрану.

Задача, на решение которой направлено данное изобретение, заключается в выявлении и использовании дополнительных эффектов, которые бы интенсифицировали массоперенос.

Техничекий результат заключается в интенсификации массопереноса фенилаланина и хлорида натрия через мембрану при стационарном диализе.

Технический результат достигается тем, что способ разделения фенилаланина и хлорида натрия стационарным диализом включает подачу исходного раствора с одной стороны сульфокатионообменной мембраны МК-40 с геометрически неоднородной поверхностью, а с другой ее стороны подачу дистиллированной воды.

Гетерогенная катионообменная мембрана МК-40 представляет собой композицию из полиэтилена и сульфированного сополимера стирола и дивинилбензола. Способ профилирования гетерогенных мембран в набухшем состоянии разработан и защищен патентом (Патент РФ № 2284851. 2006). Профилированные сульфокатионообменные мембраны отличаются улучшенными транспортными характеристиками за счет увеличения поверхности массообмена и возможности турбулизации потока раствора на элементах профиля. Доля активной поверхности для профилированной мембраны МК-40 возрастала в три раза по сравнению с гладкой мембраной, а влагоемкость возрастала на 10% при постоянной обменной емкости (~1,55 мг·экв/г) (Заболоцкий В.И. Физико-химические свойства профилированных гетерогенных ионообменных мембран. / В.И.Заболоцкий, С.А.Лоза, М.В.Шарафан // Электрохимия. - 2005. - Т.41, №10. - С.1185-1192).

На фигуре 1 представлены концентрационные зависимости коэффициентов разделения фенилаланина и хлорида натрия при диализе эквимолярных смесей с профилированной мембраной МК-40 в водородной (1) и натриевой (2) формах.

Пример 1. Разделение фенилаланина и хлорида натрия методом стационарного диализа было проведено в проточной диализной ячейке, содержащей две секции, разделенные сульфокатионообменной профилированной мембраной МК-40. Модельные растворы эквимолярных концентраций готовили из реактивов классификации «ч.д.а.». Диализ проводился из нейтральных растворов, в которых аминокислота находилась в виде биполярных ионов. Выбранный диапазон концентраций фенилаланина составил 0,0010-0,1500 моль/дм3, максимальное значение концентрации ограничено его растворимостью. Рабочая высота мембраны составляла 4,3 см, расстояние от мембраны до параллельной ей стенки кюветы составляло 0,6 см, ширина рабочей части мембраны 1,8 см. Исследуемый раствор подавали в одну из секций диализной ячейки, а через смежную приемную секцию пропускали дистиллированную воду. Скорость подачи исследуемых растворов в приемной и отдающей секциях была одинакова и составляла 9,3·10-3 см/с. Выбор скоростей обусловлен необходимостью получения воспроизводимых результатов при контроле изменения концентрации компонентов в секциях ячейки. Достижение стационарного состояния определялось по постоянству концентрации фенилаланина в приемной секции.

Контроль изменения концентрации аминокислоты в приемной секции осуществлялся спектрофотометрически на спектрофотометре СФ-46 при длине 257 нм, а хлорида натрия - методом эмиссионной фотометрии пламени на пламенно-фотометрическом анализаторе жидкостей ПАЖ-1.

Концентрационная зависимость фактора разделения SF фенилаланина и хлорида натрия при диализе эквимолярных смесей, вычисленного как отношение концентраций вытекающих растворов из приемной секции к поступающим в исходную секцию, представлена на фигуре 1. Наибольшая эффективность разделения фенилаланина и хлорида натрия характерна для мембраны в водородной форме. Установленный диапазон концентраций эквимолярных растворов, соответствующий максимуму фактора разделения (SF=10), позволяет наиболее эффективно выделять аминокислоты из смесей с минеральными компонентами стационарным диализом с профилированной катионообменной мембраной МК-40.

Способ разделения фенилаланина и хлорида натрия стационарным диализом, включающий подачу исходного раствора с одной стороны сульфокатионообменной мембраны МК-40 с геометрически неоднородной поверхностью, а с другой ее стороны подачу дистиллированной воды.



 

Похожие патенты:

Изобретение относится к аналитическому приборостроению, в частности к способам осуществления массообменных процессов с применением оптоволоконных химических датчиков.

Изобретение относится к области осуществления массообменных процессов в системах жидкость - жидкость с помощью гидрофобных пористых мембран и применяемых для разделения или избирательного выделения вещества, а также для направленной массопередачи веществ из одной фазы в другую с целью их концентрирования.

Изобретение относится к способу выделения энантиомеров из рацемической смеси противоточной экстракцией при помощи по меньшей мере двух жидкостей, имеющих взаимно различную хиральность, причем эти жидкости полностью смешиваются и разделены друг от друга фазой, с которой они не смешиваются.

Изобретение относится к области осуществления массообменных процессов в системах жидкость-газ и жидкость-жидкость с помощью пористых мембран, применяемых для разделения или избирательного выделения веществ, а также для направленной массопередачи веществ из одной фазы в другую с целью их концентрирования, например для последующего определения содержания или регулирования их концентрации в одной из фаз при оксигенации крови.

Изобретение относится к гидрометаллургии тяжелых цветных металлов, в частности к очистке отработанного медного электролита. .

Изобретение относится к мембранной технологии и может быть использовано для деминерализации растворов солей с одновременным получением концентрированных кислоты и щелочи, а также для проведения химических превращений с участием ионов водорода и гидроксила.

Изобретение относится к субстрату для иммобилизации функциональных групп, а также к способам приготовления данного субстрата и картриджу с сорбентом для использования в устройстве диализа. Субстрат содержит соединения, предназначенные для иммобилизации функциональных молекул, при этом каждое соединение содержит цепочку, включающую: функциональную группу R, химически связанную с субстратом, при этом указанная функциональная группа R выбирается из группы, включающей: эфир, сложный эфир, карбонильную группу, сложный эфир карбоната, тиоэфир, дисульфид, сульфинил, сульфонил и карбонотиоил, амин, амид, карбамат, мочевины и гуанидины; и эпоксидсодержащую функциональную группу, соединенную с функциональной группой R сшивающим агентом, включающим, по крайней мере, одну нуклеофильную группу, выбранную из группы включающей амин, гидроксил и тиол; при этом функциональная молекула состоит из фермента, который выбирается из группы, включающей уреазу, уриказу, креатининазу, липазы, эстеразы, целлюлазы, амилазы, пектиназы, каталазы, ацилазу, каталазу, эстеразу, пенициллинамидазу, протеиназу К. 6 н. и 43 з.п. ф-лы, 4 ил., 3 табл.
Наверх