Способ получения катализатора для изотопного обмена протия - дейтерия



Способ получения катализатора для изотопного обмена протия - дейтерия
Способ получения катализатора для изотопного обмена протия - дейтерия
Способ получения катализатора для изотопного обмена протия - дейтерия
Способ получения катализатора для изотопного обмена протия - дейтерия

Владельцы патента RU 2464094:

Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) (RU)

Изобретение относится к способу получения катализатора для изотопного обмена протия-дейтерия. Описан способ получения катализатора для изотопного обмена протия-дейтерия, включающий получение наночастиц металла при восстановлении ионов металла под воздействием γ-излучения 60Со в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель, причем в качестве носителя используют SiO2, а в качестве соли металла используют RhCl3 или RuОНСl3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовой раствор в количестве 5-50 мас.% и аммиачный раствор в количестве 10-30 мас.% с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со с дозой от 1 до 40 кГр. Технический результат - получен катализатор для изотопного обмена протия-дейтерия, обладающий высокой каталитической активностью. 1 з.п. ф-лы, 4 табл., 4 пр.

 

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия.

Известен способ получения катализатора путем ионного обмена, при котором носитель из огнеупорного оксида, содержащего катион водорода обрабатывают раствором, содержащим катионы металлов. Непосредственно после обработки оксид промывают водой для отделения химически несвязанных металлических катионов. Далее оксид сушат, при этом часть металлических катионов восстанавливается при нагревании огнеупорного оксида до элементарного металла путем отделения от связанной воды, которая ассоциирована с металлическими катионами (Пат. Германии №1542012 кл. B01Y 37/30 от 21.10.76 г.). Этот катализатор используется только для ионного обмена.

Известен способ получения катализатора для изотопного обмена между водой и водородом, где катализатор включает гидрофобную пористую матрицу с диспергированной в ней платиной и, по крайней мере, другой металл, выбранный из группы хрома или титана (пат. ЕР №1486457, кл. B01D 59/00, B01Y 37/00-37/02 от 06.06.2003 г.). Однако этот катализатор используется только для изотопного обмена между водой и водородом.

Наиболее близким по технической сущности и достигаемому результату является способ получения катализатора Ptмиц/Al2O3 для изотопного обмена протия и дейтерия и о-п конверсии протия. Наночастицы Pt образуются при радиационно-химическом восстановлении ионов платины в обратномицелярных системах Н2[PtCl6]/H2O/ацетон/бис(2 этилгексил)сульфосукцинат натрия/изооктан. Наночастицы получены из трех различных исходных обратномицелярных растворов, отличающихся значениями коэффициента солюбилизации ω=1,5, 3 и 5 («Перспективные материалы» стр.288-293 2010 г.).

Однако катализатор обладает невысокой каталитической активностью.

Техническим результатом изобретения является получение катализатора для изотопного обмена протия-дейтерия, обладающего высокой каталитической активностью и предназначенного для работы в интервале температур 77÷400 К.

Этот технический результат достигается получением катализатора для изотопного обмена протия-дейтерия, включающего получение наночастиц металла при восстановлении ионов металла под воздействием γ-излучения 60Со в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель, причем в качестве носителя используют SiO2, а в качестве соли металла используют RhCl3 или RuOHCl3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовый раствор в количестве 5-50 мас.% и аммиачный раствор в количестве 10-30 мас.% с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со с дозой от 1 до 40 кГр.

В качестве спирта в водно-спиртовом растворе используют изопропанол.

Пример №1

Готовился обратномицеллярный раствор соли родия RhCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 1:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-3 г (5 мас.%) и аммиачный раствор в количестве 2,0·10-2 г (30 мас.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со до достижения дозы 1 кГр.

Взвешен 1 г носителя SiO2 и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам родия в растворе с погруженным в него носителем SiO2, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Rh/SiO2 по отношению к реакции изотопного обмена водорода составила 3,90·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Рtмиц/Al2O3, выбранного в качестве прототипа. Данные по активности данного образца катализатора Rh/SiO2, приготовленного по примеру 1, в интервале температур 77÷400 К представлены в таблице 1.

Пример №2

Готовился обратномицеллярный раствор соли родия RhCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 10:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-2 г (50 мас.%) и аммиачный раствор в количестве 6,8·10-3 г (10 мас.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со до достижения дозы 40 кГр.

Взвешен 1 г носителя SiO2 и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам родия в растворе с погруженным в него носителем SiO2, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с высаженными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Rh/SiO2 по отношению к реакции изотопного обмена водорода составила 4,10·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Рtмиц/Al2O3, выбранного в качестве прототипа.

Данные по активности данного образца катализатора Rh/SiO2, приготовленного по примеру 2, в интервале температур 77÷400 К представлены в таблице 2.

Пример №3

Готовился обратномицеллярный раствор соли рутения RuOHCl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 1:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-3 г (5 мас.%) и аммиачный раствор в количестве 2,0·10-2 г (30 мас.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со до достижения дозы 1 кГр.

Взвешен 1 г носителя SiO2 и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам рутения в растворе с погруженным в него носителем SiO2, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с нанесенными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ru/SiO2 по отношению к реакции изотопного обмена водорода составила 4,6·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Ptмиц/Al2O3, выбранного в качестве прототипа.

Данные по активности данного образца катализатора Ru/SiO2, приготовленного по примеру 3, в интервале температур 77-400 К представлены в таблице 3.

Пример №4

Готовился обратномицеллярный раствор соли рутения RuОНСl3 при отношении мольных количеств водного раствора соли металла к мольному количеству бис(2-этилгексил)сульфосукцината натрия 10:1. Затем добавляют водно-спиртовый раствор в количестве 3,4·10-2 г (50 мас.%) и аммиачный раствор в количестве 6,8·10-3 г (10 мас.%) с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со до достижения дозы 40 кГр.

Взвешен 1 г носителя SiO2 и помещен в 10 мл полученного обратномицеллярного раствора.

По убыли интенсивности пиков, соответствующих наночастицам рутения в растворе с погруженным в него носителем SiO2, судили о факте адсорбции наночастиц родия. Факт образования наноструктурированных частиц родия фиксировался по наличию характерных пиков в спектрах оптического поглощения, а также при помощи атомно-силовой микроскопии. Образцы носителя с нанесенными наночастицами родия извлекались из обратномицеллярного раствора и в течение суток сушились на воздухе. Высушенные образцы промывались последовательно изооктаном (однократно), водно-спиртовым раствором (однократно) и дистиллированной водой (трехкратно). Приготовленные образцы катализаторов с высаженными наночастицами родия подвергались прогреву в вакууме до 550 К в течение четырех часов. При давлении 0,5 Торр и температуре 77 К каталитическая активность катализатора Ru/SiO2 по отношению к реакции изотопного обмена водорода составила 4,42·1014 молекул/(см2·с), что в ~2 раза превышает активность катализатора Рtмиц/Al2O3, выбранного в качестве прототипа.

Результаты измерений удельной каталитической активности образца катализатора Ru/SiO2, приготовленного по примеру 4, в интервале температур 77-400 К представлены в таблице 4.

Представленные данные показывают отсутствие значимых различий в величинах каталитической активности при отношении мольного количества водно-спиртового раствора соли родия или рутения с добавлением аммиака к мольному количеству ПАВ в диапазоне от 1:1 до 10:1 и поглощенной дозе облучения 1÷40 кГр.

1. Способ получения катализатора для изотопного обмена протия - дейтерия, включающий получение наночастиц металла при восстановлении ионов металла под воздействием γ-излучения 60Со в обратномицеллярном растворе, состоящем из раствора соли металла, ПАВ, представляющего собой бис(2-этилгексил)сульфосукцинат натрия, и неполярного растворителя, изооктана, с последующим нанесением на носитель, отличающийся тем, что в качестве носителя используют SiO2, а в качестве соли металла используют RhСl3 или RuОНСl3 и готовят обратномицеллярные растворы родия или рутения при отношениях мольных количеств водного раствора соли металла к мольному количеству ПАВ в диапазоне от 1:1 до 10:1, затем добавляют водно-спиртовой раствор в количестве 5-50 мас.% и аммиачный раствор в количестве 10-30 мас.% с последующей ультразвуковой обработкой, деаэрацией и воздействием γ-излучения 60Со с дозой от 1 до 40 кГр.

2. Способ получения катализатора для изотопного обмена протия - дейтерия по п.1, отличающийся тем, что в качестве спирта в водно-спиртовом растворе используется изопропанол.



 

Похожие патенты:
Изобретение относится к способу получения катализатора для изотопного обмена протия-дейтерия. .
Изобретение относится к способу получения катализатора для изотопного обмена протия-дейтерия. .

Изобретение относится к новому клатратному комплексу (соединению включения) -циклодекстрина с производным 5-гидрокси-4-аминометил-1-циклогексил(или циклогептил)-3-алкоксикарбонилиндола: -циклодекстрин от 1:1 до 1:5, предпочтительно, при соотношения от 1:1 до 1:3.

Изобретение относится к электронной технике и предназначено для создания дискретных приборов или сверхвысокочастных интегральных схем на полевых транзисторах. .

Изобретение относится к клеевой композиции на основе хлорсодержащего полимера для склеивания деталей защитных костюмов и средств защиты органов дыхания, изготовленных из прорезиненных материалов.

Изобретение относится к области получения огнеупорных и керамических изделий на основе диоксида циркония и может быть использовано в машиностроении, авиационной, нефтехимической и электротехнической промышленностях.

Изобретение относится к области неорганической химии углерода, а именно: к нанодисперсным углеродным материалам и способу их очистки, и может быть использовано в различных высокотехнологичных областях промышленности и науки, где применяются порошки детонационных наноалмазов.

Изобретение относится к технике производства углеродных нанотрубок с использованием электромагнитного излучения. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .
Изобретение относится к способу получения катализатора окисления метанола до формальдегида и может быть использовано в производстве формальдегида и карбамидо-формальдегидных смол.
Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к катализаторам. .
Изобретение относится к области каталитической химии, а именно к приготовлению катализатора с наноразмерными частицами сплавов платины на углеродном носителе, используемого в химических источниках тока.

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия.

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия.

Изобретение относится к области нефтепереработки, в частности к созданию катализатора для получения малосернистой нефтяной фракции, и способу его получения и может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности.

Изобретение относится к способам активации металлоксидных катализаторов. .
Изобретение относится к области производства модифицированных катализаторов крекинга углеводородов, в частности нефтяных фракций, обладающих повышенной активностью и селективностью, и может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности.
Изобретение относится к способу получения катализатора для изотопного обмена протия-дейтерия. .
Наверх