Способ получения защитного изоляционного покрытия на цирконии


 


Владельцы патента RU 2472873:

Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ГОУ ВПО ВГУ) (RU)

Изобретение относится к области электрохимической обработки вентильных металлов и может быть использовано в атомной энергетике для защиты от воздействия агрессивных сред и изоляции оболочек тепловыделяющих элементов из циркония. Способ включает анодное оксидирование образца из циркония в электролите с добавлением фторсодержащего компонента, при этом анодное оксидирование проводят в два этапа, причем на первом этапе проводят анодирование в безводном электролите, содержащем фториды, при плотностях тока 10-20 мА/см2 и напряжении 95-130 В, затем образец подвергают катодной поляризации в 4% водном растворе борной кислоты с добавлением 25% раствора аммиака, при напряжениях, соответствующих первому этапу анодирования, отмывке в дистиллированной воде и сушке, а на втором этапе проводят анодное окисление циркония в электролите, в котором проводили катодную поляризацию, в режиме постоянного тока плотности 1-5 мА/см2 и напряжении 200-300 В. Технический результат - получение размерных, сплошных, устойчивых анодных покрытий на цирконии. 1 пр.

 

Изобретение относится к области электрохимической обработки и может найти применение, например, в атомной энергетике для защиты от воздействия агрессивных сред и изоляции оболочек тепловыделяющих элементов изготовляемых из циркония.

Известен способ нанесения защитных покрытий на металлы, включая цирконий (патент РФ №2078857, C25D 11/00, 1997), предполагающий обработку в электролитах в режиме электрических разрядов чередующимися импульсами тока положительной и отрицательной полярности; при этом соотношение амплитуд и скважности импульсов для щелочных и кислотных электролитов разные.

Недостатком указанного способа является проведение процесса оксидирования при сравнительно высоких напряжениях на электрохимической ячейке. Одним из электродов является изделие из циркония. В результате этого образующееся покрытие разрыхляется под действием локальных электрических пробоев (т.н. «искрения»).

Это приводит, в конечном итоге, к ослаблению сцепления полученной оксидной пленки с металлом (в данном случае с цирконием), наличию в нем слабых мест в виде сквозных пор, трещин и т.п.

Известен способ получения покрытий на изделиях из циркония в кислых электролитах с добавлением гидрофторида аммония (SU №1171571, C25D 11/26, 1985), в другом способе после завершения процесса окисления, изделие промывают, сушат и подвергают нагреву до температуры 800-105°С (RU №2252277, C25D 11/26, 2005). Данный способ, если и уменьшает пористость, но окончательно ее не устраняет. Кроме того, нагрев может привести к трещинообразованию.

Задачей изобретения является получение защитного изоляционного покрытия на цирконии с антикоррозионными и изоляционными свойствами, лишенными вышеуказанных недостатков.

Технический результат изобретения заключается в получении размерных, сплошных, устойчивых анодных покрытий на цирконии.

Технический результат достигается тем, что в способе получения защитного покрытия на цирконии, включающем анодное электрохимическое оксидирование образца из циркония в электролите с добавлением фторсодержащего компонента, согласно изобретению процесс анодного оксидирования проводят в два этапа, на первом этапе проводят анодирование в безводном электролите, содержащем фториды при плотностях тока 10-20 мА/см2 и напряжении 95-130 В, затем образец подвергают катодной поляризации в 4% водном растворе борной кислоты с добавлением 25% раствора аммиака при напряжениях, соответствующих первому этапу анодирования, отмывке в дистиллированной воде и сушке, на втором этапе проводят анодное электрохимическое окисление циркония в электролите, в котором проводили катодную поляризацию, в режиме постоянного тока плотности 1-5 мА/см2 и напряжении 200-300 В.

Первоначально ведется электрохимическое анодирование в безводном электролите, например, на основе этиленгликоля или глицерина с добавлением фторсодержащих компонентов, например фтористого аммония. В этом случае получается пористое покрытие с регулярной системой пор диаметром порядка 0,14 мкм и толщиной, определяемой временем анодирования.

После анодирования образцы подвергались очистке от фтор-ионов путем катодной поляризации в 4% водном растворе борной кислоты с добавлением 25% раствора аммиака, при напряжениях, соответствующих первому этапу анодирования. После этого образцы промывались в дистиллированной воде и сушились по стандартной методике.

На втором этапе образцы оксидируются в электролите, в котором проводилась очистка от фтор-ионов в режиме постоянного тока плотности 1-5 мА/см2 до напряжений 200-300 В.

В этом случае в первоначально сформированном пористом оксиде циркония происходит наращивание сплошного, т.н. «барьерного», слоя в порах (Анодные оксидные покрытия на легких сплавах. Под общ. ред. акад. АН УССР И.Н.Францевича, Наука думка, Киев, 1977).

В результате, образующийся анодный оксид циркония обладает значительно меньшим количеством микродефектов, что существенно повышает его антикоррозионные и изоляционные свойства.

Способ получения защитного покрытия на цирконии, включающий анодное электрохимическое оксидирование образца из циркония в электролите с добавлением фторсодержащего компонента, отличающийся тем, что анодное оксидирование проводят в два этапа, причем на первом этапе проводят анодирование в безводном электролите, содержащем фториды, при плотностях тока 10-20 мА/см2 и напряжении 95-130 В, затем образец подвергают катодной поляризации в 4%-ном водном растворе борной кислоты с добавлением 25%-ного раствора аммиака при напряжениях, соответствующих первому этапу анодирования, отмывке в дистиллированной воде и сушке, а на втором этапе проводят анодное электрохимическое окисление циркония в электролите, в котором проводили катодную поляризацию, в режиме постоянного тока плотности 1-5 мА/см2 и напряжении 200-300 В.



 

Похожие патенты:

Изобретение относится к получению покрытий из диборида титана путем высокотемпературного электрохимического синтеза. .

Изобретение относится к области гальванотехники и может быть использовано для защиты от гальванокоррозии металлоконструкций из разнородных металлов и сплавов, работающих в водных коррозионно-активных средах.

Изобретение относится к области гальванотехники и может быть использовано в двигателестроении. .

Изобретение относится к способам получения магнитных материалов, в частности магнитоактивных оксидных покрытий на вентильных металлах, преимущественно алюминии и его сплавах и титане и его сплавах, и может найти применение в конструкциях электромагнитных экранов и поглотителей электромагнитного излучения.
Изобретение относится к сварочным материалам для специальных наплавок при изготовлении изделий из титановых сплавов. .

Изобретение относится к электрохимической обработке поверхности титановых сплавов, а именно к способам получения защитного покрытия на титановых сплавах методом анодного оксидирования.
Изобретение относится к способам получения материалов, содержащих пирофосфат циркония ZrP2О7. .

Изобретение относится к сварочным материалам для специальных наплавок при изготовлении изделий из титановых сплавов. .
Изобретение относится к получению смешанных оксидов церия и циркония в виде тонких пленок на металлической подложке и может найти применение в катализе. .
Изобретение относится к области гальванотехники и может быть использовано в авиационной, судостроительной, нефте- и газодобывающей, перерабатывающей промышленности, приборостроении и медицинской технике

Изобретение относится к области получения тонких пленок магнитных материалов, в частности магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения для различной аппаратуры, экранированных помещений, защищенных от утечки информации, а также для космической и авиационной техники

Изобретение относится к сварочным материалам для антифрикционных наплавок при изготовлении изделий из титановых сплавов
Изобретение относится к области получения декоративных покрытий на изделиях из стекла, керамики и других материалов с оптически гладкой поверхностью и может быть использовано при нанесении декоративных покрытий на товары народного потребления, отделочно-декоративные и художественные изделия в различных областях народного хозяйства

Изобретение относится к области гальванотехники и может быть использовано в области наноэлектроники. Способ включает формирование слоя пористого анодного оксида анодным окислением титанового образца в потенциостатическом режиме в электролите на неводной основе, при этом после формирования слоя пористого анодного оксида проводят электрохимический процесс его отделения в слабом водном растворе неорганической кислоты катодной поляризацией титанового образца в потенциостатическом режиме, затем анодным окислением титанового образца в потенциостатическом режиме в электролите на неводной основе формируют вторичный слой пористого анодного оксида титана, при этом анодное окисление титанового образца для формирования слоя и вторичного слоя пористого анодного оксида проводят при термостабилизации зоны протекания электрохимической реакции. Технический результат: повышение воспроизводимости формирования пористого оксида титана с высокой степенью упорядоченности наноструктуры. 2 з.п. ф-лы, 2 ил., 1 пр.
Изобретение относится к области гальванотехники и может быть использовано для получения защитно-декоративных покрытий в промышленности, в частности для формирования тонких пленок нитрида титана на поверхностях из титана и его сплавов. Способ включает электролитическое получение тонкого слоя нитрида титана на поверхности титана, при этом формирование покрытия осуществляют методом анодной поляризации при постоянном токе в электролитах на основе полярных органических растворителей с добавлением воды в присутствии 0,1-0,5 мас.% электропроводящих добавок с барботированием азотсодержащим газом, при этом электролиз проводят при комнатной температуре электролита. Технический результат: получение тонких, плотных, равномерных слоев нитрида титана различной толщины, в том числе на деталях различной конфигурации. 8 пр.

Изобретение относится к электролитическим методам обработки поверхности металлических материалов и может быть использован в стоматологическом протезировании. Способ заключается в получении биосовместимого покрытия на стоматологических имплантатах, выполненных из титана и его сплавов, включающий помещение изделий в водный раствор электролита, содержащий гидроксид калия и наноструктурный гидроксиаиатит в виде водного коллоидного раствора, возбуждение на поверхности изделий микродуговых разрядов, при этом оксидирование обрабатываемых изделий осуществляют в химически стойкой непроводящей ванне; в раствор электролита помещают одновременно две партии обрабатываемых изделий, предварительно закрепив изделия одной партии к клеммам для обрабатываемых деталей, изделия другой партии - к клеммам вспомогательного электрода; а электролит дополнительно содержит гидроксид натрия, гидрофосфат натрия, натриевое жидкое стекло, метасиликат натрия, в следующих соотношениях, из расчета массы сухого вещества в граммах на литр состава: гидроксид калия КОН - 2, гидроксида натрия NaOH - 1, гидрофосфата натрия Na2HРО4×12H2О - 5, жидкое стекло nNa2O·mSiO2 (М=3,2) - 5, метасиликат натрия Na2SiO3×9H2O - 8, нанодисперсный гидроксиапатит - 0,5÷5, причем отклонения от указанных концентраций компонентов электролита не превышают ±10%. 1 табл., 4 ил., 1 пр.
Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из конструкционных материалов. Покрытие на имплантате из корундовой или циркониевой керамики содержит промежуточный слой титана толщиной 5-50 мкм на имплантате, нанесенный в плазме непрерывного вакуумного дугового разряда, и слой кальций-фосфатного соединения, нанесенный электрохимическим методом анодирования титана в режиме искрового или дугового разрядов. Технический результат - расширение номенклатуры материалов для основы имплантатов, на которые можно наносить кальций-фосфатные биоактивные покрытия электрохимическим методом в условиях искрового или дугового разрядов. 3 пр.

Изобретение относится к области гальванотехники и может быть использовано для увеличения удельной поверхности деталей из сплавов устройств различной функциональности, в частности, при создании каталитически активных устройств. Способ изготовления детали из сплава титан-алюминий с нанопористой поверхностью включает изготовление детали с пористой поверхностью из спеченного порошка сплава титан-алюминий с размерами гранул 1-10 мкм, промывку детали в этаноле, сушку, промывку в дистиллированной воде, сушку при температуре 80-90°С и формирование нанопористого оксида на поверхности детали анодированием в 10,0% растворе серной кислоты с добавкой 0,15% фтористоводородной кислоты при постоянной плотности тока. Технический результат: увеличение удельной поверхности деталей. 1 пр., 1 ил.
Изобретение относится к области гальванотехники и может быть использовано в промышленности для формирования тонких слоев защитно-декоративных покрытий нитрида титана на поверхностях из титана и его сплавов. Способ электролитического формирования слоя нитрида титана на поверхности титана и его сплава включает анодную поляризацию изделия при постоянном токе в электролите на основе полярных органических растворителей в присутствии воды и 0,1-0,3 мас.% соли аммония в качестве электролитической добавки, при этом электролиз проводят при комнатной температуре электролита. Технический результат: получение тонких, плотных и равномерных слоев нитрида титана различной толщины на деталях различной конфигурации. 8 пр.
Наверх