Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов



Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов
Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов

 


Владельцы патента RU 2473145:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ" (НИЯУ МИФИ) (RU)

Изобретение относится к радиохимической технологии, конкретно к очистке жидких радиоактивных отходов. Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов включает сорбцию радионуклидов, обработку реагентами при комнатной температуре, осаждение осадка при использовании коагулянта, окисление в присутствии катализатора и катализатора при температуре 75±2°С, перемешивание суспензии, отделение радиоактивного сорбента и его цементирование с применением вяжущей системы, отличающийся тем, что в качестве сорбента используется тонкодисперсный природный сорбент - трепел с размером частиц 0,1-0,3 мм, термообработанный при температуре 350±20°С из расчета ≤10 г/л, в качестве реагентов - растворимые соли переходных металлов (FeIII, CoII, NiII) из расчета не менее 0,012 моля металла на 1 л жидких отходов и раствор гидроксида натрия в мольном отношении Me+n:NaOH=1:3, в качестве коагулянта - оксид кальция в количестве не менее 1 г/л ЖРО, в качестве окислителя - перманганат калия в количестве 0,04-0,32 г/л ЖРО, в качестве катализатора - СаО из расчета 1 г/л ЖРО, радиоактивный сорбент цементируют с применением шлакощелочной вяжущей системы, содержащей доменный гранулированный шлак, глинистый компонент и гидроксид натрия. Изобретение позволяет улучшить параметры обезвреживания жидких радиоактивных отходов, образующихся при дезактивации за счет упрощения технологического процесса, использования широко распространенных и дешевых природных сорбентов, обладающих высокой селективностью по отношению к радионуклидам. 1 ил., 3 табл.

 

Изобретение относится к радиохимической технологии, конкретно к очистке жидких радиоактивных отходов, образующихся при дезактивации поверхностей: нержавеющих, в том числе окисленных, стальных поверхностей (оборудование, арматура и т.д.), плиточных и облицовочных материалов, включая линолеум, пластикат, т.е. поверхности пола, стен и других строительных конструкций, загрязненных радионуклидами со следующими характеристиками - активность до ~109 Бк/л; радионуклидный состав РОДР определяется Cs - 137, Sr - 90 и Со - 60; рН растворов от 8 до 10; солесодержание до 25 г/л.

К технологическим решениям по очистке ЖРО предъявляются два основных требования очистить воду до действующих Норм радиационной безопасности (НРБ) и Основных санитарных правил по обращению с радиоактивными веществами (ОСПОРБ) по всем радионуклидам, а также по токсичным компонентам до норм по их сбросу в водоемы или промканализацию и, кроме того, максимально сократить объем вторичных отходов, подлежащих захоронению.

Известен способ очистки жидких радиоактивных отходов, включающий обработку их ферроцианидом тяжелого металла и отделение полученного осадка. При этом обработку жидких радиоактивных отходов осуществляют ферроцианидом тяжелого металла, образующегося при введении в жидкие радиоактивные отходы ферроцианида калия и двухвалентных солей никеля и/или меди и железа, взятого в избыточном от стехиометрического количестве. Осветленный раствор после отделения осадка обрабатывают окислителем и фильтруют через каталитический материал, содержащий двуокись марганца. Далее отфильтрованный раствор пропускают через сильнокислотный катионит в Na-форме и сильноосновный анионит в Cl-форме (патент РФ №2254627, МПК G21F 9/12). К недостаткам способа следует отнести использование дорогостоящего ферроцианида калия, высокую вероятность образования токсических соединений, образующихся при его разложении в щелочной среде, а также применение катионита и анионита, требующих периодического восстановления.

Известен способ обезвреживания радиоактивных отходов, включающий корректировку рН до величины 8-12, создание солесодержания суммы неорганических и органических веществ не более 25 г/л, введение в подготовленный раствор ЖРО отобранных фракций природного сорбента и осуществление сорбции радионуклидов путем перемешивания раствора ЖРО с сорбентом. Затем отделяют полученный радиоактивный сорбент от раствора методом фильтрования под давлением через ультра- или микропористый мембранный фильтр с плазмохимическим покрытием, сбрасывают сорбент в накопитель и цементируют в геоцементный камень (патент РФ №2189650, МПК G21F 9/12). Однако данный способ пригоден только для очистки низкоактивных, малосолевых растворов с невысоким уровнем содержания органических веществ, что не позволит обезвреживать РОДР до уровня требований действующих НРБ.

Наиболее близким к заявляемому способу является способ переработки жидких отходов, содержащих радионуклиды, заключающийся в их окислительной обработке путем озонирования в присутствии катализатора процесса окисления и/или коллектора извлечения радионуклидов. Озонирование отходов производят при температуре 30-80°С при рН раствора 10-13 и разделением образующегося радиоактивного шлама и жидкой фазы, с обработкой последней осадителями для дополнительного выделения радионуклидов с последующим снижением рН до значения 8-9, повторным отделением образовавшегося радиоактивного шлама и доочисткой жидкой фазы на селективных сорбентах, отверждение полученных шламов и отработанных сорбентов и направления очищенных от радионуклидов растворов на отверждение и хранение как химических отходов (патент РФ №2122753, МПК G21F 9/06). Недостатками указанного способа являются: повышенная энергоемкость процесса и усложненность аппаратурно-технологической схемы переработки за счет использования узла озонирования; необходимость проведения дополнительных технологических операций по переработке отделяемого шлама.

Технический результат заявляемого способа заключается в улучшении параметров обезвреживания жидких радиоактивных отходов, образующихся при дезактивации за счет упрощения технологического процесса, использования широко распространенных и дешевых природных сорбентов, обладающих высокой селективностью по отношению к радионуклидам, их цементирование совместно со шламами с использованием необходимой шлако-вяжущей системы позволяет создавать минералоподобные камни, обладающие высокой водоустойчивостью и механической прочностью.

Это достигается тем, что в способе переработки жидких радиоактивных отходов от применения дезактивирующих растворов, включающем сорбцию радионуклидов, обработку реагентами при комнатной температуре, осаждение осадка при использовании коагулянта, окисление в присутствии катализатора и катализатора при температуре 75±2°С, перемешивание суспензии, отделение радиоактивного сорбента и его цементирование с применением вяжущей системы, в качестве сорбента используется тонкодисперсный природный сорбент - трепел с размером частиц 0,1-0,3 мм, термообработанный при температуре 350±20°С из расчета ≤10 г/л, в качестве реагентов - растворимые соли переходных металлов (FeIII, CoII, NiII) из расчета не менее 0,012 моль металла на 1 л жидких отходов и раствор гидроксида натрия в мольном отношении Me+n:NaOH=1:3, в качестве коагулянта - оксид кальция в количестве не менее 1 г/л ЖРО, в качестве окислителя - перманганат калия в количестве 0,04-0,32 г/л ЖРО, в качестве катализатора - СаО из расчета 1 г/л ЖРО, радиоактивный сорбент цементируют с применением шлакощелочной вяжущей системы, содержащей доменный гранулированный шлак, глинистый компонент и гидроксид натрия.

На фигуре 1 представлена технологическая схема реализации заявляемого способа: в раствор жидких радиоактивных отходов, образующихся от применения дезактивирующих растворов (характеризующихся наличием сухого остатка на уровне 0,75-5,0 г/л, ХПК на уровне 0,16-2,86 гО2/л, активностью на уровне 103-106 Бк/л), вводятся термообработанные при температуре 350±20°С тонкодисперсные (0,1-0,3 мм) сорбенты из расчета 10 г/л, а также реагенты - растворимые соли переходных металлов (FeIII, CoII, NiII) из расчета не менее 0,012 моль металла на 1 л жидких отходов и раствор гидроксида натрия в мольном отношении Me+n:NaOH=1:3, далее осуществляется перемешивание раствора в течение 2 часов, процесс проводится при комнатной температуре 20-30°С. Не более чем за 10 минут до окончания перемешивания в раствор вводят коагулянт - СаО из расчета не менее 1 г/л ЖРО, затем раствор отстаивают и фильтруют. Образовавшуюся сгущенную суспензию отправляют на цементирование, а раствор с остатками взвеси для дальнейшей переработки. Дальнейшая переработка заключается в повторном введении в раствор тонкодисперсных сорбентов и реагента-окислителя (перманганат калия в количестве 0,04-0,32 г/л) с катализатором (СаО из расчета 1 г/л). Процесс проводится при температуре 75±2°С, при перемешивании в течение не менее 3 часов. Далее полученная суспензия отстаивается не менее 1 часа и фильтруется. Полученная сгущенная суспензия отправляется на цементирование, а осветленный нерадиоактивный раствор - на сброс в спецканализацию или применяется для технических нужд.

Для подтверждения эффективности способа были использованы модельные растворы РОДР двух химических составов, приведенные в таблице 1, где указаны составы моющих растворов для дезактивации поверхностей объектов для приготовления модельных растворов радиоактивных растворов радиоактивных отработанных дезактивирующих растворов (РОДР), содержащие 137Cs. Применение в первую очередь 137Cs связано с тем, что его вклад является основным в общей радиоактивности РОДР.

Объединение соответствующих спецрастворов с промывочной водой приводит к образованию ряда соединений в получаемых отработанных дезактивирующих растворах с определенными концентрациями. На основе составления химических реакций, протекающих в растворах при объединении соответствующих растворов, и расчета концентраций образующихся химических соединений, были рассчитаны химические составы модельных растворов №1 (РОДР для дезактивации нержавеющих стальных поверхностей, включая окисленные поверхности) и №2 (РОДР для дезактивации поверхности строительных конструкций).

Концентрация химических компонентов в модельном растворе №2 была взята в 2-3 раза выше, чем это получается при получении РОДР по процедуре, указанной в таблице 1 для обеспечения сравнимых условий испытаний по общему солесодержанию. Кроме того, во всех документах имеются указания о минимальном расходе промывочных вод для уменьшения общего объема образующихся отработанных дезактивирующих растворов. Поэтому реальные РОДР могут быть с более высоким солесодержанием за счет сокращения объема промывочных вод. Водородный показатель среды в модельных растворах №1 и 2 на первом этапе испытаний был откорректирован до рН ~11,5, так как ранее было показано, что извлечение радионуклидов из ряда водно-солевых растворов природными силикатными сорбентами оптимально при этом значении рН.

Объемная активность 137Cs в растворах варьировалась от 102 до 109 Бк/л.

Выбор расхода сорбента также определялся результатами ранее проведенных исследований по очистке растворов ЖРО с высоким содержанием органических соединений.

Результаты исследований показали, что наиболее эффективным сорбентом для извлечения 137Cs из РОДР №1 (водно-солевого раствора с низким содержанием органических соединений - ~4%) является трепел. Повторное введение этого сорбента (как природного, так и термообработанного) обеспечило очистку раствора в целом от уровня 5·104 Бк/л до 5 Бк/л, т.е. ниже уровня вмешательства, установленного нормативными требованиями НРБ-99/2009. Для извлечения 137Cs ниже уровня вмешательства из РОДР №1 клиноптилолитом и бентонитом потребовалось третье введение новых порций этих сорбентов.

Извлечение 137Cs из РОДР №1 при его начальной объемной активности 5·107 Бк/л обеспечило уже за одну ступень высокую степень очистки (99,993%) термообработанным трепелом и высокий коэффициент распределения (концентрирования) - 1,4·106 мл/г, что связано с высокой емкостью сорбента. Полная очистка таких растворов с извлечением 137Cs ниже уровня вмешательства обеспечивается за три ступени сорбции (таблица 2), в которой указаны результаты изучения эффективности извлечения радионуклида 137Cs природными сорбентами из модельного раствора №1 (имитатор РОДР дезактивации нержавеющих стальных поверхностей) методом ступенчатой сорбции.

Для очистки от 137Cs растворов РОДР №1 при начальной объемной активности 109 Бк/л потребуется использование приема ступенчатой сорбции с введением новых порций сорбента - термообработанного трепела до 4-х раз при его расходе на каждой ступени 10 г/л.

В таблице 2 представлены суммарные коэффициенты эффективности извлечения 137Cs из модельных растворов РОДР №1 при начальной объемной активности от 104 Бк/л до 109 Бк/л. Полученные данные свидетельствуют о возможности эффективной очистки от 137Cs РОДР, содержащих невысокие концентрации органических соединений (по крайней мере до 4% от общего содержания веществ) при солесодержании до 6 г/л. Далее будет выполнено исследование влияния эффективности очистки таких растворов с солесодержанием до 25 г/л.

Исследования очистки от 137Cs РОДР после дезактивации строительных конструкций выполняется по такой же схеме (таблица 3). Повышение содержания органических веществ до ~17% от общего солесодержания приводит к понижению эффективности извлечения 137Cs из таких РОДР методом непосредственной сорбции. Выполнены исследования с использованием термосорбционного метода, такое исследование выполняется с целью сокращения количества ступеней сорбции для извлечения основной массы радионуклида природным сорбентом.

Как видно из таблицы 3, для извлечения 137Cs из РОДР после дезактивации строительных конструкций наиболее эффективным природным сорбентом проявил себя трепел (как природный, так и термообработанный). Термообработанный трепел значительно легче отделяется от раствора после сорбции, чем остальные исследованные сорбенты.

На основе полученных результатов рекомендованы оптимальные параметры очистки РОДР для отработки технологического режима. В качестве природного сорбента рекомендован трепел (смесь опоки и трепела Зикеевского месторождения Калужской области), обеспечивающий наилучшие показатели сорбционного извлечения радионуклида цезия (коэффициент одноступенчатой очистки до 104). Двухступенчатая очистка раствора РОДР после дезактивации поверхностей нержавеющих сталей обеспечивает сорбционное извлечение 137Cs трепелом до требований норм НРБ-99/2009.

Таким образом, предлагаемый способ позволяет эффективно обезвреживать РОДР после дезактивации строительных конструкций и поверхностей из нержавеющей стали. Использование изобретения позволит сократить объемы ЖРО при их переработке; использовать технологию цементирования для иммобилизации отработанного сорбента в механически прочный и водоустойчивый геоцемент; повысить безопасность и понизить стоимость переработки ЖРО; не требует перехода к высокоэнергоемкой технологии переработки высокоактивных сорбентов.

Таблица 2
Сорбент Начальная активность, Бк/л Активность после сорбции, Бк/л Суммарная степень сорбции, % Суммарный коэффициент очистки Суммарный коэффициент распределения, мл/г Удельная активность сорбента, Бк/кг
КЛН** 5·104 <10 >99,98 >5·103 >1,66·105 >1,66·106
Трепел* природный
5·104 <10 >99,98 >5·103 >1,25·105 >1,25·106
Трепел* термообр.
5·104 <10 >99,98 >5·103 >2,5·105 >2,5·106
Бентонит**
5·104 ≤10 ≥99,98 ≥5·103 ≥1,66·105 ≥1,66·106
Трепел** термообр.
5·107 195 99,99 2,56·105 8,55·106 1,66·109
Трепел** термообр.
6,7·109 320 99,999995 2,1·107 7·108 2,23·1011
Сорбент введен 2 раза (*), 3 раза (**).
Таблица 3
Сорбент Начальная активность, Бк/л Активность после сорбции, Бк/л Суммарная степень сорбции, % Суммарный коэффициент очистки Суммарный коэффициент распределения, мл/г Удельная активность сорбента, Бк/кг
КЛН** 5,4·104 ≤10 ≥99,98 ≥5,4·103 ≥1,8·105 ≥1,8·106
Трепел* природный
5,4·104 ≤10 ≥99,98 ≥5,4·103 ≥1,35·105 ≥1,35·106
Трепел* термообр.
5,4·104 ≤10 ≥99,98 ≥5,4·103 ≥2,7·105 ≥2,7·106
Бентонит**
5,4·104 ≤10 ≥99,98 ≥5,4·103 ≥1,8·105 ≥1,8·106
Трепел** термообр.
5·107 180 99,9996 3·105 107 1,8·109
Трепел** термообр.
6,7·109 467 99,999 1,43·107 4,78·108 2,23·1011
Сорбент введен 2 раза (*), введен 3 раза (**).

Способ переработки жидких радиоактивных отходов от применения дезактивирующих растворов, включающий сорбцию радионуклидов, обработку реагентами при комнатной температуре, осаждение осадка при использовании коагулянта, окисление в присутствии катализатора и катализатора при температуре (75±2)°С, перемешивание суспензии, отделение радиоактивного сорбента и его цементирование с применением вяжущей системы, отличающийся тем, что в качестве сорбента используется тонкодисперсный природный сорбент - трепел с размером частиц 0,1-0,3 мм, термообработанный при температуре (350±20)°С из расчета ≤10 г/л, в качестве реагентов - растворимые соли переходных металлов (FeIII, CoII, NiII) из расчета не менее 0,012 моль металла на 1 л жидких отходов и раствор гидроксида натрия в мольном соотношении Me+n:NaOH=1:3, в качестве коагулянта - оксид кальция в количестве не менее 1 г/л ЖРО, в качестве окислителя - перманганат калия в количестве 0,04-0,32 г/л ЖРО, в качестве катализатора - СаО из расчета 1 г/л ЖРО, радиоактивный сорбент цементируют с применением шлакощелочной вяжущей системы, содержащей доменный гранулированный шлак, глинистый компонент и гидроксид натрия.



 

Похожие патенты:
Изобретение относится к области определения радиоактивной загрязненности пресных вод. .

Изобретение относится к методам фракционирования долгоживущих радионуклидов при комплексной переработке облученного ядерного топлива (ОЯТ) атомных электростанций (АЭС) и направлено на селективное выделение нептуния из совместного экстракта урана, нептуния, плутония и технеция.

Изобретение относится к переработке жидких радиоактивных отходов (ЖРО) мембранно-сорбционными методами и применяется для очистки вод радио- и химическитоксичных загрязнений в мобильных установках переработки ЖРО.

Изобретение относится к области защиты окружающей среды и ликвидации последствий аварий, касается процесса высокоэффективной очистки воздуха (газов) от радиоактивных веществ и предназначено для использования в системах газоочистки предприятий, производящих радиоактивные изотопы, и особенно в местах постоянного загрязнения воздушной среды радиоактивными веществами.

Изобретение относится к атомной энергетике и может быть использовано при очистке и дезактивации оборудования, эксплуатируемого в среде жидкого свинцового теплоносителя, и переработке (обезвреживании) образующихся жидких радиоактивных отходов на стадиях их очистки, концентрирования и отверждения.
Изобретение относится к ядерной энергетике, а именно к способам дезактивации оборудования ядерных паропроизводящих установок с регулированием мощности борной кислотой.

Изобретение относится к способам дезактивации вод открытых водоемов, водных стоков, зараженных радионуклидами, а также для дезактивации нейтральных или щелочных технологических растворов радиохимических производств.

Изобретение относится к области ядерной энергетики, а именно к способам очистки сточных вод атомной и радиохимической промышленности, а также природных водных сред от радиоактивных изотопов.

Изобретение относится к области охраны окружающей среды, а точнее к области переработки жидких радиоактивных отходов (ЖРО). .
Изобретение относится к области переработки растворов (в том числе радиоактивных растворов, образующихся при производстве и переработке ядерного топлива), содержащих соли аммония, и может быть использовано в радиохимической промышленности.

Изобретение относится к области переработки отходов, содержащих натрий и радиоактивное вещество

Изобретение относится к процессам извлечения и концентрирования радионуклидов и может быть использовано в радиохимических технологиях при переработке жидких радиоактивных отходов. Заявленная экстракционная смесь состоит из диамида дипиридилдикарбоновой кислоты и полярного фторорганического разбавителя при следующем соотношении компонентов, мол./л: экстрагент - 0,03-0,15; разбавитель - остальное. Техническим результатом является возможность извлечения урана, плутония и америция совместно и отделения их от основной массы редкоземельных элементов и других продуктов деления, а также разделения актинидов на стадии реэкстракции. 1 з.п. ф-лы, 3 ил., 5 табл.

Изобретение относится к способу обработки радиоактивного раствора, содержащего радионуклиды кобальта совместно с органическим комплексообразователем и радионуклиды цезия. Способ включает введение в исходный радиоактивный раствор окисляющего реагента при обеспечении заданной величины рН раствора и содержащего железо(II) восстанавливающего реагента с восстановлением кобальта(III) до кобальта(II) и декомплексацией последнего, введение осадителя с переводом радионуклидов кобальта и цезия в осадок и его отделение от маточного раствора, содержащего органический комплексообразователь и остаточное количество радионуклидов кобальта и цезия. При этом в качестве окисляющего реагента используют азотную кислоту, содержащий железо(II) реагент вводят в количестве 0,5-2,0 г/л Fe(II) при рН 3,0-3,5 с декомплексацией кобальта образующимися в растворе соединениями железа(III), полученный раствор выдерживают в течение 2-6 часов, в качестве осадителя берут сульфид натрия Na2S в количестве, стехиометрически необходимом для образования при величине рН 4-6 основного коллективного осадка сульфида железа FeS, содержащего радионуклиды кобальта и цезия, при этом маточный раствор подвергают циклу доочистки. Способ обеспечивает снижение количества используемых реагентов и минимальную по отношению к очищаемому раствору массу подлежащего захоронению радиоактивного осадка, а также высокую степень очистки раствора от радионуклидов кобальта и цезия. 7 з.п. ф-лы, 4 пр.

Изобретение относится к диамидам 2,2′-бипиридил-6,6′-дикарбоновых кислот формулы , где X=R1=H, R2=4-C6H13, или X=R1=H, R2=4-Et, или X=R1=H, R2=4-iPr, или X=H, R1=2-Me, R2=4-Me, или X=H, R1=2-Me, R2=5-Me, или X=H, R1=3-Me, R2=4-Ме, или X=R1=H, R2=4-OEt, или X=Br, R1=R2=H, или X=Br, R1=H, R2=4-C6H13, или X=R1=H, R2=2-F, или X=R1=H, R2=3-F, или X=R1=H, R2=4-F, или X=NO2, R1=R2=H. Также изобретение относится к способу получения указанных диамидов. Технический результат: получены новые производные 2,2′-бипиридил-6,6′-дикарбоновых кислот, полезные для выделения актинидов из жидких радиоактивных отходов. 2 н.п. ф-лы.
Изобретение относится к способу разрушения азотсодержащих соединений и фосфорсодержащих соединений и может быть использовано для переработки растворов, образующихся при производстве и переработке ядерного топлива, содержащих соединения восстановленного азота, а также фосфорсодержащие соединения, к которым относятся растворы от регенерации экстрагента и комплексоны, образующие при упаривании среднеактивных хвостовых растворов неразлагаемые остатки, что не позволяет направлять растворы на остекловывание. Предложенный способ включает окислительную обработку азотсодержащих соединений и фосфорсодержащих соединений азотной кислотой при нагревании в автоклаве при концентрации азотной кислоты от 1 до 8 моль/л и температуре 130-220°C в зависимости от прочности соединений. Техническим результатом является разрушение как неорганических, так и органических азотсодержащих и фосфорсодержащих соединений. 3 з.п. ф-лы, 4 пр.

Заявленное изобретение относится к способу переработки облученного топлива АЭС. Заявленный способ включает совместное экстракционное извлечение урана, плутония, нептуния и технеция 30%-ным трибутилфосфатом в углеводородном разбавителе из азотнокислого раствора, промывку экстракта этих элементов раствором азотной кислоты, восстановительную реэкстракцию плутония и нептуния с отмывкой от урана с технецием комплексующим восстановителем - ацетогидроксамовой кислотой, селективную восстановительную реэкстракцию технеция раствором того же восстановителя с гидразином и реэкстракцию урана. При этом реэкстракцию технеция проводят во всем блоке его реэкстракции, дополнительно вводя в процесс уран(IV) в смеси с комплексующим восстановителем и гидразином, а процесс разделения урана и технеция проводят до полного извлечения урана (IV), обеспечив его распространение с экстрактом по блоку при отсутствии в реэкстракте технеция путем регулирования соотношения экстрагента и реэкстракта технеция при его отмывке от урана. Техническим результатам является повышение эффективности реэкстракции технеция. 3 з.п. ф-лы, 1 ил., 5 пр.

Изобретение относится к области ядерной энергетики, а именно к переработке жидких радиоактивных отходов, в частности кубовых остатков выпарных установок переработки трапных вод атомных электростанций. Способ удаления радиоактивного изотопа 60Co включает окисление кубового остатка в режиме циркуляции через трубчатый реактор под воздействием жесткого ультрафиолетового излучения ксеноновой лампы, вводимой перекиси водорода и непрерывным инжектированным воздухом в реактор, который предварительно направляют во внутренний электрод лампы, а полученную после этого озоно-воздушную смесь направляют в окисляемый раствор, и выделение активированных продуктов коррозии фильтрацией. Изобретение обеспечивает эффективное удаление радиоактивного изотопа 60Со из кубовых остатков атомных электростанций и экономию количества реагентов для соосадительной доочистки. 2 н.п. ф-лы, 1 ил., 1 пр.

Заявленное изобретение относится к способу получения совместного раствора U и Pu при переработке облученного ядерного топлива АЭС. Заявленный способ включает предварительную экстракцию U, Pu, Np, Тc из азотнокислого раствора 30%-ным раствором трибутилфосфата в алифатическом разбавителе. Отделение Tc и реэкстракция Pu предусмотрены с помощью раствора обедненного или регенерированного урана в форме U(IV) с очисткой от нептуния с помощью стабилизированного нитратом гидразина раствора U(IV) с повышенной концентрацией азотной кислоты, подаваемого в первую ступень зоны отмывки реэкстракта Pu(III) от U(VI) блока реэкстракции Pu с расходом, обеспечивающим в отмытом реэкстракте Pu(III) весовое соотношение U:Pu до 6. Одновременно осуществляется подача в середину блока небольшого потока слабокислого раствора U(IV) и в конец блока раствора, содержащего 0,1-1,0 моль/л HNO3 и 0,05-0,5 моль/л N2H5NO3 с расходами, обеспечивающими выведение Np(IV) и избытка U(IV) с экстрактом U(VI) с последующим окислением U(IV) и разделением U(VI) и Np. Техническим результатом является совмещение способов совместного получения раствора Pu и обедненного U путем применения для реэкстракции плутония раствора обедненного урана в виде U(IV) и проведение этого процесса в сильнокислотном режиме для очистки Pu от Np. 3 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способу переработки отработавшего ядерного топлива атомных электростанций (АЭС) и имеет целью отделение (фракционирование) и локализацию долгоживущих радионуклидов для их последующего захоронения в виде устойчивых матриц. Заявленный способ включает экстракцию урана(+6), плутония(+4), нептуния(+6) и технеция(+7) из азотнокислого раствора разбавленным трибутилфосфатом и циркония в присутствии хрома(+6) с насыщением экстракта актинидами более 85%, а также селективную восстановительную реэкстракцию нептуния(+5) из экстракта с помощью раствора пероксосоединений при содержании азотной кислоты в реэкстракте 0,7-2,5 моль/л с промывкой реэкстракта оборотным экстрагентом. При этом вводимый на реэкстракцию экстракт актинидов разбавляют в протоке оборотным экстрагентом до содержания в нем актинидов 65-82% в экстракте после реэкстракции нептуния и циркония. Техническим результатом является возможность эффективного (более чем на 97%) проведения реэкстракции нептуния совместно с цирконием во втором блоке экстракционной схемы, без промывки экстракта в головном экстракторе при потерях плутония и урана с реэкстрактом нептуния не более 0,1%. 3 з.п. ф-лы, 1 ил., 1 табл., 2 пр.
Наверх