Способ получения активного оксида алюминия


 


Владельцы патента RU 2473468:

Петрова Елена Арсеньевна (RU)

Изобретение относится к области химии. Побочный продукт производства хлорсодержащих солей в виде непрореагировавшего осадка при растворении в соляной кислоте при повышенной температуре кислородсодержащего соединения алюминия состава Аl2О3·nH2О, где n=0,5-2,9, промывают и сушат. Затем его подвергают пластификации при добавлении азотной кислоты и воды до кислотного модуля 0,025-0,05, формованию, сушке и термообработке. Термообработку проводят при температуре 400-1300°С. Изобретение позволяет получить активный оксид алюминия с улучшенными свойствами, улучшить экологию за счет использования отходов производства хлорсодержащих солей алюминия. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к способам получения оксидов алюминия, которые находят широкое применение в качестве носителей, сорбентов, адсорбентов, осушителей, катализаторов химической, нефтехимической, газовой промышленности. Данный способ может быть также применен для получения широкопористых наполнителей при производстве строительных, теплоизоляционных, шумопоглощающих и других материалов.

Известен способ получения оксида алюминия (А.с. RU №1629248, МПК5 C01F 7/02, опубл. 23.02.1991), в котором с целью упрощения процесса и расширения интервала регулируемых адсорбционно-структурных параметров адсорбента, постадийно осаждают гидроксид алюминия из раствора соли алюминия с исходной концентрацией 2-10 мас.% раствором аммиака с проведением каждого последующего осаждения после введения в опытный гель гидроксида, полученного на предыдущей стадии, дополнительного количества исходного раствора соли алюминия, увеличения массы гидроксида на 5-10% от первоначально полученного осадка. Полученный Осадок отделяют, отмывают, сушат и прокаливают. Это позволяет повысить удельную поверхность адсорбента в 2,2-2,5 раза и сорбционную емкость в 1,5 раза с повышением однородности пор, причем регулирование числа этапов осаждения дает возможность получать адсорбент с заранее заданными свойствами.

Недостатками данного способа являются сложная технология получения оксида алюминия и невозможность получения этим способом оксида алюминия с широкими порами, при увеличении радиуса пор до 213 ангстрем удельная поверхность падает до 98 м2/г.

В патенте США №3664970 (МПК B01J 23/50, B01J 23/66, опубл. 05.23.1972). в котором однородные крупные частицы оксида алюминия получают при введении промежуточных связующих, которые при повышенной температуре выгорают и при выделении воды образуются поры конечной структуры.

Недостатком данного способа является то, что при выжигании порообразующих веществ трудно воспроизводится заданная пористая структура оксида алюминия.

Известен способ получения из тригидрата оксида алюминия оксидов алюминия с большим объемом пор и большой поверхностью (Патент RU 2259232 МПК B01J 21/04, C01F 7/02, опубл. 27.08.2005). Диспергирование и гидротермическую обработку тригидрата оксида алюминия проводят в присутствии контролируемых количеств компонента затравки, представляющей собой диспергированный активированный оксид алюминия и, по меньшей мере, один дополнительный компонент, представляющий собой ингибитор роста размера кристаллов.

Получение оксида алюминия с высоким объемом пор и высоким средним диаметром пор делает ненужным прокаливание перед добавлением металлов для увеличения среднего диаметра пор. Также становится ненужным использование органических растворителей для азеотропного удаления воды, которое является дорогим и наносит вред окружающей среде.

Недостатком данного способа является сложность способа.

Известен способ получения активного оксида алюминия (Мухленов К.П. и др. Технология катализаторов. Л., «Химия», 1979), в котором технический гидрат глинозема (гидраргиллит состава AlOH3) растворяют в серной или азотной кислоте или щелочи с последующей обработкой раствора соответственно щелочью или кислотой. Полученный осадок отмывают, пластифицируют, формуют, сушат и прокаливают.

К недостаткам данного способа можно отнести наличие большого количества промывных вод и по этому способу в основном получают оксид алюминия с узким радиусом пор 3-10 нм.

Известен способ получения носителя катализатора или сорбента (Патент RU 2175263 МПК7 B01J 20/30, B01J 20/08, опубл. 27.10.2001). Способ включает обработку исходного вещества, в качестве которого используют отработанный катализатор процесса конверсии метана до водорода, содержащий оксид алюминия и Ni2+ или отработанный катализатор гидрирования и неселективной очистки газов, содержащий оксид алюминия и ионы палладия, смесью кислот из расчета массового соотношения Al2O3:H2C2O4:HNO3=1:(0,02-0,2):(0,01-0,08), и термообработку при 400-1000°С, при этом отработанные катализаторы предпочтительно предварительно размалывать до частиц размера 20-50 мкм, а после кислотной обработки возможно осуществлять пластификацию водой в присутствии поверхностно-активных веществ с последующей формовкой, а после термообработки при температуре 400-1000°С дополнительно можно проводить прокаливание при температуре 1100-1400°С.

Данный способ позволяет из отработанных катализаторов получать высокопористый оксид алюминия. Однако недостатком его является также наличие большого количества кислот и сточных вод.

Наиболее близким техническим решением является способ получения активного оксида алюминия (А.с. RU 559900 МПК C01F 7/44, опубл. 30.05.77), включающий измельчение технического гидроксида алюминия, смешение его с неорганическим связующим, перемешивание полученной массы, формование в гранулы, сушку и прокаливание, а в качестве неорганического связующего используют гидроксид кальция в количестве 10-25% от гидроксида алюминия и на стадии перемешивания добавляют воду.

Недостатком является то, что образцы, получаемые по предложенной технологии, также имеют высокий насыпной вес (0,835-0,839 г/см2) и довольно низкую механическую прочность (2,6-3,1).

Как видно из вышесказанного, существует проблема получения оксида алюминия, имеющего поры с высоким эффективным радиусом, с большой поверхностью и при этом обладающего высокой прочностью.

Задачей изобретения является получение активного оксида алюминия с улучшенными свойствами, с повышенной прочностью, и расширение сырьевой базы для получения оксидов алюминия.

Поставленная задача решается с помощью способа получения активного оксида алюминия, включающего пластификацию, формование, сушку и термообработку.

В качестве исходного вещества для получения активного оксида алюминия используют побочный продукт производства хлорсодержащих солей алюминия в виде непрореагировавшего осадка при растворении в соляной кислоте при повышенной температуре кислородсодержащего соединения алюминия состава Al2O3·nH2O, где n=0,5-2,9, который перед пластификацией промывают и сушат.

Предпочтительно пластификацию проводят при добавлении азотной кислоты и воды до кислотного модуля 0,025-0,05, массу перемешивают до необходимой пластичности и подают на формование.

Предпочтительно термообработку проводят при температуре 400-1300°С.

В предлагаемом решении в качестве исходного вещества используют высушенный побочный продукт производства хлорсодержащих солей алюминия (хлористого алюминия, оксихлоридов алюминия) в виде непрореагировавшего осадка при растворении в соляной кислоте при температуре 95-100°С частично дегидратированного продукта - кислородсодержащего соединения алюминия состава Al2O3·nH2O, где n=0,5-2,9 с последующим разделением растворов хлорсодержащих солей алюминия и побочного продукта - непрореагировавшего осадка.

В качестве исходного алюминийсодержащего сырья для получения хлорсодержащих солей алюминия используют технический гидрат глинозема, переведенный в химически активное состояние путем импульсного термического воздействия в турбулентном токе горячих газов.

Исходный технический гидрат глинозема формулы Al2O3·3H2O для получения хлорсодержащих солей алюминия переводят путем импульсной термической обработки в частично дегидратированный продукт формулы Al2O3·nH2O, где n=0,5-2,9, имеющий рентгеноаморфное состояние.

Импульсную термическую обработку технического гидрата глинозема осуществляют при температуре 350-900°С в течение 3-10 с.

Охлаждение продукта осуществляют до температуры ниже 200°С за время не более 10 мин.

Полученный продукт с высокой химической активностью используется для получения хлорсодержащих солей алюминия.

Непрореагировавший осадок, побочный продукт производства хлорсодержащих солей алюминия, сушат. Высушенный осадок является исходным веществом для получения оксидов алюминия, имеющих различные свойства в зависимости от условий проведения пластификации, формования, сушки и термообработки.

Нами было обнаружено, что из побочного продукта производства хлорсодержащих солей алюминия можно получить по простой технологии активный оксид алюминия (в том числе широкопористый), причем количество пластификатора, необходимого на стадии пластификации, значительно уменьшается. Это можно объяснить тем, что предлагаемый отход производства хлорсодержащих солей алюминия, оксихлоридов алюминия уже прошел обработку соляной кислотой и после промывки отхода производства хлорсодержащих солей алюминия небольшое количество соляной кислоты содержится в осадке и не удаляется при промывке.

Небольшое количество адсорбированной соляной кислоты в осадке при использовании его для получения активного оксида алюминия позволило значительно снизить кислотный модуль при проведении стадии пластификации, что при термообработке носителя привело к значительному уменьшению оксидов азота.

Широкопористые оксиды алюминия получаются благодаря тому, что побочный продукт производства хлорсодержащих солей алюминия отделяется, как нерастворенный продукт, после обработки кислородсодержащего соединения алюминия формулы Al2O3·nH2O, где n=0,5-2,9, соляной кислотой при повышенных температурах. При этом происходит выщелачивание его, поэтому из такого побочного продукта производства хлорсодержащих солей алюминия получается широкопористый оксид алюминия с высокой прочностью.

Проведение термообработки при температуре 400-1300°С позволяет получать различные модификации оксида алюминия.

При термообработке 450-600°С получается носитель с насыпным весом 0,7-0,83 г/см3, с удельной поверхностью 170-230 м2/г, с общим объемом пор 0,4-0,5 см3/г, механической прочностью 6-7 кг/мм2, с эффективным радиусом пор 70-150 Å.

Способ приготовления оксидов алюминия заключается в следующем: навеску отхода производства солей хлористого алюминия или коагулянтов - оксихлоридов алюминия, которая промыта промывной водой с четырехкратным ее избытком и высушена при 120°С, подают на стадию пластификации, добавляют воду с азотной кислотой с кислотным модулем 0,025-0,05.

Кислотный модуль определяется мольным отношением азотной кислоты к молю Al2O3 (моль HNO3/моль Al2O3).

Массу пластифицируют, подают в шнек-гранулятор и получают гранулы с диаметром, соответствующим размеру диаметра отверстий фильеры. Затем проводят сушку при температуре до 120°C с последующим прокаливанием при заданной температуре, в зависимости от получения необходимой модификации активного оксида алюминия.

Свойства полученного активного оксида алюминия определяют следующими способами: распределение пор по радиусам проводилось методом ртутной порометрии на поромере 2000 фирмы "Carbo Erba"; прочность на раздавливание на торец определяли на приборе МП-9С; удельная поверхность определялась сорбционным методом.

Нижеследующие примеры иллюстрируют предлагаемое изобретение.

Пример 1.

Навеску побочного продукта производства солей хлористого алюминия, для получения которого использовали соединение формулы Al2O3·nH2O, где n=0,9, в количестве 1 кг, которая промыта промывной водой с четырехкратным ее избытком и высушена при 120°С, подают на стадию пластификации, добавляют воду с азотной кислотой с кислотным модулем 0,025. Перемешивают до необходимой пластичности и подают на стадию формования. Полученные экструдаты сушат при температуре до 120°С и прокаливают при температуре 450°С.

В таблице 1 представлены свойства полученного носителя.

Пример 2. Аналогичен примеру 1. В качестве исходного вещества используют побочный продукт производства коагулянтов оксихлоридов алюминия, для получения которых использовали соединение формулы Al2O3·nH2O, где n=2,0, который промыт промывной водой с четырехкратным ее избытком и высушен при 120°С, и подают на стадии пластификации, добавляют воду с азотной кислотой с кислотным модулем 0,03. Дальше готовят оксид алюминия аналогично примеру 1.

Пример 3. В качестве исходного вещества используют побочный продукт коагулянтов оксихлоридов алюминия высокой основности. Готовят аналогично примеру 1, только температура термообработки составляет 600°С.

Пример 4. Аналогичен примеру 3. Только температура термообработки составляет 1300°С.

Пример 5 (по прототипу). 265 г виброизмельченного порошка технического гидроксида алюминия смешивают с 23,8 г связующего порошка гидроксида кальция. Смесь перемешивают и добавляют 84 см3 воды. Приготовленную массу формуют в щнеке-грануляторе. Гранулы сушат при температуре 100-120°С в течение 4 ч и проводят термообработку при 400-450°С в течение 4 ч. Содержание компонентов составляет: активный оксид алюминия 80 мас., связующее гидроксид кальция 20 мас.

Техническим результатом предлагаемого решения является получение активного оксида алюминия с радиусом пор 60-150 Å, в том числе широкопористого оксида алюминия, с улучшенными свойствами, с повышенной прочностью, с экологичным способом его получения за счет использования отходов производства хлорсодержащих солей алюминия и расширение сырьевой базы для получения оксидов алюминия.

Как видно из приведенных примеров, предлагаемый способ получения дает возможность получать различные модификации оксидов алюминия по упрощенной технологии. Кислотный модуль при пластификации снижен до 0,025. Однако снижение кислотного модуля не снизило прочность получаемых модификаций активного оксида алюминия. Изменение температуры термообработки от 400°С до 1300°С дает возможность получать активный оксид алюминия с насыпным весом 0,7-0,83 г/см3, с удельной поверхностью 170-230 м2/г, с общим объемом пор 0,4-0,5 см3/г, механической прочностью 6-7 кг/мм2, с эффективным радиусом пор 60-150 Å.

Таблица 1
Зависимость свойств активного гранулированного оксида алюминия от условий получения
Примеры № п/п Кислотный модуль Термообработка, °С Характеристика готового продукта
Насыпной вес, г/см3 S уд., м2 Σ V пор, см3 Прочность, кг/см2 Эффективный радиус пор, Å
1 0,025 450 0,7 220 0,4 6,1 90
2 0,03 450 0,8 230 0,5 6,3 70
3 0,05 600 0,83 170 0,4 7,0 150
4 0,05 1300 0,75 10 0,2 9,0 150
5 - 450 0,6 150 0,28 3,1 30

1. Способ получения активного оксида алюминия, включающий пластификацию, формование, сушку и термообработку, отличающийся тем, что в качестве исходного вещества для получения активного оксида алюминия используют побочный продукт производства хлорсодержащих солей в виде непрореагировавшего осадка при растворении в соляной кислоте при повышенной температуре кислородсодержащего соединения алюминия состава Аl2О3·nН2О, где n=0,5-2,9, который перед пластификацией промывают и сушат.

2. Способ по п.1, отличающийся тем, что пластификацию проводят при добавлении азотной кислоты и воды до кислотного модуля 0,025-0,05, массу перемешивают и подают на формование.

3. Способ по п.2, отличающийся тем, что термообработку проводят при температуре 400-1300°С.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к способам управления работой электрических печей для получения легированного (циркониевого) корунда. .

Изобретение относится к области химии. .
Изобретение относится к химической промышленности, в частности к получению гидрозоля оксида алюминия, который используют в качестве носителей катализаторов, коагулянта при очистке воды, связующего при изготовлении оболочковых форм для точного литья из жаропрочных сталей.
Изобретение относится к дисперсиям нанооксида алюминия, предназначенным для образования покрытий. .

Изобретение относится к области химии и может быть использовано для получения порошка гидроксида алюминия и оксида алюминия. .

Изобретение относится к области неорганической химии, в частности к способу получения нанокристаллов оксида алюминия. .
Изобретение относится к области химии и используется для получения оксида алюминия. .
Изобретение относится к цветной металлургии, а именно к комплексной переработке красных шламов глиноземного производства

Изобретение относится к области химии
Изобретение относится к катализатору и способу селективного гидрирования полиненасыщенных углеводородных соединений, присутствующих в нефтяных фракциях, преимущественно происходящих из парового или каталитического крекинга, в соответствующие алкены
Изобретение относится к области химии. Для получения гранулированного сорбента смешивают 70÷90 мас.% негашеной извести и 10÷30 мас.% гидроксида алюминия. Смесь подвергают последовательно механической активации в мельницах с ударно-сдвиговым характером нагружения в течение 0,1÷12 ч, пластификации водой, формованию гранул и сушке при температуре 110÷120°C не менее 4 ч. Изобретение позволяет упростить процесс, снизить себестоимость продукта, улучшить активность сорбента. 1 табл., 3 пр.

Изобретение относится к утилизации летучей золы электростанций. Летучую золу измельчают и удаляют из нее железо путем мокрой магнитной сепарации. Добавляют соляную кислоту в полученный фильтрационный осадок с получением продукта солянокислого выщелачивания, который пропускают через макропористую катионную смолу для глубокого удаления железа с получением очищенного раствора хлорида алюминия. Проводят концентрирование и кристаллизацию очищенного раствора хлорида алюминия с получением кристаллического хлорида алюминия, который затем прокаливают с получением металлургического глинозема. Изобретение обеспечивает повышение извлечения глинозема. 16 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к способу синтеза наноразмерного композиционного металлоксида и к композиционному металлооксиду, полученному таким способом. Способ включает добавление диспергатора к коллоиду с наночастицами диоксидцериевого композиционного оксида со средним диаметром наночастиц 10 нм или менее, добавление диспергатора к коллоиду с наночастицами оксида алюминия со средним диаметром наночастиц 10 нм или менее, раздельную подачу коллоида с наночастицами диоксидцериевого композиционного оксида, к которому добавлен диспергатор, и коллоида с наночастицами оксида алюминия, к которому добавлен диспергатор, в высокоскоростную мешалку, синтез наночастиц алюминийоксидно-диоксидцериевого композиционного оксида путем обеспечения взаимодействия в микропространстве наночастиц диоксидцериевого композиционного оксида и наночастиц оксида алюминия и приложение усилия сдвига при степени сдвига 17000 сек-1 или более к наночастицам алюминийоксидно-диоксидцериевого композиционного оксида. Изобретение обеспечивает синтез более однородных наноразмерных композиционных металлооксидов с высокими характеристиками. 2 н. и 4 з.п. ф-лы, 6 ил., 2 табл., 8 пр.
Изобретение может быть использовано при получении высокопрочных материалов. Для получения корундовой микропленки осаждают слой корунда на пленочную основу или барабан из материала с пониженной адгезией, в качестве которого используют фторопласт, а затем снимают корундовую пленку с пленочной основы или барабана. Слой корунда может быть осажден на пленочную основу из возгоняющегося материала, в качестве которого используют фторопласт-4, а затем осуществлена возгонка основы. Также слой корунда осаждают на пленочную основу из растворимого материала, в качестве которого используют нитроцеллюлозу, затем основу растворяют. Кроме того, для получения корундовой микропленки слой корунда осаждают на пленочную основу или барабан из плавящегося материала, в качестве которого используют олово, после чего пленочную основу или барабан плавят и отделяют слой корунда. Изобретение позволяет получить корундовую микропленку повышенной прочности и эластичности. 4 н. и 2 з.п. ф-лы, 4 пр.

Изобретение относится к улучшенному способу получения альфа-фазы оксида алюминия, включающему дистилляционную очистку алкоголята алюминия, его гидролиз и синтез альфа-фазы оксида алюминия. При этом дистилляционную очистку алкоголята алюминия проводят в токе инертного газа, а гидролиз алкоголята алюминия и синтез альфа-фазы оксида алюминия осуществляют в сверхкритическом реакторе. Способ позволяет повысить степень чистоты альфа-фазы оксида алюминия, повысить производительность и уменьшить энергозатраты на единицу продукции с одновременным увеличением насыпной плотности альфа-фазы оксида алюминия. 2 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к энергетике, более конкретно к способу переработки золошлаковых материалов (ЗШМ) угольных электростанций, и может найти применение при получении глиноземного концентрата и белитового шлама для целей глиноземной и строительной промышленности. Способ переработки золошлаковых материалов угольных электростанций включает активацию золошлаковых материалов и разделение продуктов переработки с получением кремнезема и глинозема. Способ отличается тем, что последовательно выполняют гидравлическую классификацию золошлаковых материалов по классу 45 мкм с получением двух фракций: +45 мкм и слабомагнитную фракцию -45 мкм, фракцию +45 подвергают магнитной сепарации с получением магнитного концентрата и хвостов магнитной сепарации, хвосты магнитной сепарации подвергают флотации с получением углеродного концентрата и хвостов флотации, хвосты флотации с классификацией меньше 45 мкм и слабомагнитную фракцию -45 объединяют в общую фракцию с последующим растворением общей фракции в растворе гидрооксида натрия, разделением полученной пульпы на кек, обогащенный глиноземом, и раствор силиката натрия, после чего кек перерабатывают на глинозем, а раствор силиката натрия регенерируют известью. Техническим результатом изобретения является устранение недостатков известных технических решений путем изменения аппаратурного оформления способа и повышение полноты переработки ЗШМ за счет получения из них высококачественных целевых продуктов в виде глинозема и высокодисперсного кремнезема, в максимальной степени очищенных от вредных примесей, лимитируемых ГОСТом (марганец, хром, сера, цинк, железо, фосфор и др.). 1 з.п. ф-лы, 9 табл., 2 пр.

Изобретение относится к способам получения аморфного мезопористого гидроксида алюминия со слоисто-волокнистой микроструктурой. Способ получения аморфного мезопористого аэрогеля гидроксида алюминия со слоисто-волокнистой ориентированной наноструктурой включает проведения реакции синтеза аэрогеля гидроксида алюминия в герметичной емкости путем обработки бинарного расплава парогазовым потоком на основе смеси инертных и (или) малоактивных газов с водяным паром при температуре расплава 280-1000°С. В качестве бинарного расплава используется висмут с содержанием алюминия 0,05-7,00 мас.%. Изобретение позволяет улучшить технико-экономические показатели при производстве наноструктурного аэрогеля AlOOH. 1 ил., 1 табл.
Наверх