Способ определения теплопроводности материалов

Изобретение относится к области теплофизических измерений и может быть использовано для определения теплопроводности материалов. Технический результат, получаемый при осуществлении заявленного изобретения, заключается в том, что температурная деформация изгиба эталонного образца компенсируется допускаемым для исследуемого образца механическим давлением. Технический результат достигается посредством того, что исследуемый плоский образец известной толщины через источник теплоты с заданной плотностью теплового потока приводят в тепловой контакт по плоскости с плоским эталонным образцом. Термостатируют при заданной температуре внешние плоскости исследуемого и эталонного образцов с теплоизолированными боковыми поверхностями и измеряют температуру в плоскости контакта. При этом эталонный образец формируют из двух идентичных пакетов, содержащих уложенные одна на другую параллельно плоскости теплового контакта плоские пластины, толщина которых определяется допускаемым для исследуемого образца давлением. Причем один из пакетов предварительно устанавливают вместо исследуемого образца, определяют среднее тепловое сопротивление обоих пакетов и используют его двойное значение при определении теплопроводности исследуемого образца. 1 ил.

 

Изобретение относится к области теплофизических измерений и может быть использовано для определения теплопроводности материалов, преимущественно теплоизоляционных.

Известен способ определения теплопроводности материалов (ГОСТ 7076 - 99), согласно которому два плоских исследуемых образца известной толщины с теплоизолированными боковыми поверхностями приводят в тепловой контакт по общей плоскости через источник теплоты с заданной плотностью теплового потока, термостатируют при заданной температуре их внешние плоскости, измеряют температуру в плоскости контакта и определяют среднюю теплопроводность λс:

или тепловое сопротивление Rc исследуемых образцов:

где hc - средняя толщина образцов;

ΔТ - перепад температуры между температурой в плоскости контакта и температурой термостатирования внешних плоскостей образцов;

q - плотность теплового потока, генерируемого источником теплоты для создания на образцах перепада температуры ΔТ.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного решения, относится то, что оно не дает возможности определить теплопроводность или тепловое сопротивление каждого из исследуемых образцов, а позволяет судить лишь о среднем значении теплопроводности обоих образцов.

Известен также способ определения теплопроводности материалов (Н.А. Соколов. Воспроизводимость результатов измерений термического сопротивления ограждающих конструкций в различных испытательных центрах // Светопрозрачные конструкции № 5, 2004, с. 18-20.), который по совокупности признаков является наиболее близким аналогом заявляемого изобретения.

Согласно этому способу исследуемый плоский образец известной толщины через источник теплоты с заданной плотностью теплового потока приводят в тепловой контакт по плоскости с плоским эталонным образцом, термостатируют при заданной температуре внешние плоскости исследуемого и эталонного образцов с теплоизолированными боковыми поверхностями, измеряют температуру в плоскости контакта и определяют теплопроводность исследуемого образца λ по следующей формуле:

где h - толщина исследуемого образца;

Rэ - тепловое сопротивление эталонного образца.

Формула (2) преобразуется к виду (см. там же):

где qи - плотность теплового потока, протекающего через исследуемый образец;

qэ - плотность теплового потока, протекающего через эталонный образец.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного решения, относится недопустимо большое увеличение погрешности, возникающее из-за температурной деформации изгиба эталонного образца, механическая компенсация которого требует приложения к исследуемому и эталонному образцам давления, недопустимо большого для исследуемого образца.

Действительно, с учетом контактного теплового сопротивления эталонного образца Rк выражение (3) примет вид:

где Rк принимают равным 0,005 м2·К/Вт, а для теплоизоляционных материалов и изделий - нулю (ГОСТ 7076).

Температурная деформации изгиба эталонного образца, которая характеризуется стрелой прогиба, определяется формулой (Сергеев О.А., Шашков А.Г. Теплофизика оптических сред // Минск: Наука и техника, 1983. - 232 с. (см. с. 74)):

где wэ - стрела прогиба эталонного образца;

aэ - температурный коэффициент линейного расширения (ТКЛР) эталонного образца;

Dэ - диаметр эталонного образца;

hэ - толщина эталонного образца.

Прототип обеспечивает наивысшую точность измерения теплопроводности исследуемого образца при примерном равенстве теплового сопротивления эталонного и исследуемого образцов (если эталонный и исследуемый образец имеют одинаковую толщину, то - при примерном равенстве их теплопроводности). При измерении теплопроводности эффективных теплоизоляторов (λ = 0,05 Вт/(м·К) и меньше) при температуре ниже 10 °С (283 К) каталог эталонных материалов (МИ 2590-2008. ГСИ. Эталонные материалы, (см. с. 10)) в качестве эталонного образца с минимальной теплопроводностью регламентирует использование органического стекла с теплопроводностью порядка λэ = 0,2 Вт/(м·К), имеющего ТКЛР аэ = 1,2·10-4·К-1 (Гороновский И.Т., Назаренко Ю.П., Некряч Е.Ф. Краткий справочник по химии // Киев: Наукова думка, 1974. - 991 с. (см. с. 634, 635)). Подставляя также типовые численные значения Dэ = 0,3 м, hэ = 0,03 м, ΔТ = 10 К (ГОСТ 7076) в формулу (5), получим толщину воздушной прослойки возле плоскости эталонного образца, вогнутой в результате температурной деформации изгиба, wэ = 0,00045 м. По справочным данным (см. там же, с. 725), теплопроводность воздуха составляет λв = 0,03 Вт/(м·К). Контактное сопротивление, образованное воздушной прослойкой, определится как Rк = wэв, или, после подстановки численных значений, Rк = 0,015 м2·К/Вт, что в 3 раза превышает значение, допускаемое согласно ГОСТ 7076.

Измеряемое тепловое сопротивление эталонного образца Rэ = hээ, которое после подстановки численных значений составит 0,15 м2·К/Вт, найденное контактное сопротивление увеличивает на 10 %. Относительная погрешность расчета искомого значения λ по формуле (4), записанной в виде:

также составит 10 %, что в 3 раза превышает значение погрешности метода измерений, допускаемое согласно ГОСТ 7076.

Величина равномерно распределенной нагрузки р, с помощью которой удается скомпенсировать температурную деформацию изгиба эталонного образца, составит (Платунов Е.С., Баранов И.В., Буравой С.Е., Курепин В.В. Теплофизические измерения: учебное пособие / Под ред. Е.С. Платунова // Санкт-Петербург: СПбГУНиПТ, 2010. - 738 с. (см. с. 301)):

где Е - модуль Юнга материала эталонного образца.

По справочным данным (Гороновский И.Т., Назаренко Ю.П., Некряч Е.Ф. Краткий справочник по химии // Киев: Наукова думка, 1974. - 991 с. (см. с. 634, 635)), модуль Юнга для органического стекла имеет значение Е = 3200 МПа. После подстановки численных данных в формулу (7) имеем р = (92…138) кПа. Для полужестких материалов, каковыми являются практически все эффективные теплоизоляторы, максимально допустимое давление ограничивается значением рд = 2 кПа (Quin S., Venuti G., De Ponte F., Lamberty A. Certification of a Resin-Bonded Glass Fibre Road for Thermal Conductivity between -10°C and +50°C IRMM-440 // Luxemburg: Office for Official Publications of the European Communities, 1999. - 65 p (см. с. 6)). Таким образом, механическая компенсация температурной деформации изгиба эталонного образца требует приложения недопустимо большого для исследуемого образца давления, в 50 раз превышающего нормируемое значение.

Задачей, на решение которой направлено заявляемое изобретение, является повышение точности определения теплопроводности материалов.

Технический результат, получаемый при осуществлении заявляемого изобретения, заключается в том, что температурная деформация изгиба эталонного образца компенсируется допускаемым для исследуемого образца механическим давлением.

Указанный технический результат при осуществлении изобретения достигается тем, что исследуемый плоский образец известной толщины через источник теплоты с заданной плотностью теплового потока приводят в тепловой контакт по плоскости с плоским эталонным образцом, термостатируют при заданной температуре внешние плоскости исследуемого и эталонного образцов с теплоизолированными боковыми поверхностями и измеряют температуру в плоскости контакта, но в отличие от известного способа, эталонный образец формируют из двух идентичных пакетов, содержащих уложенные одна на другую параллельно плоскости теплового контакта плоские пластины, толщина которых определяется допускаемым для исследуемого образца давлением, причем один из пакетов предварительно устанавливают вместо исследуемого образца, определяют среднее тепловое сопротивление обоих пакетов и используют его двойное значение при определении теплопроводности исследуемого образца.

На чертеже показана схема реализации заявляемого способа.

В устройстве для реализации заявляемого способа используют плоские исследуемый образец 1 и эталонный образец 2, состоящий из нескольких плоских пластин 3. Между ними помещен плоский источник теплоты 4. Образцы 1 и 2 приведены в тепловой контакт через источник теплоты 4. Внешняя плоскость эталонного образца 2 приведена в тепловой контакт с термостатом 5. Внешняя плоскость исследуемого образца 1 приведена в тепловой контакт с термостатом 6, который снабжен источником давления 7. Боковые поверхности исследуемого образца 1 и эталонного образца 2 окружены адиабатической оболочкой 8.

Заявляемый способ реализуется следующим образом.

Плоские пластины эталонного образца 2 укладывают одна на другую на термостат 5 параллельно плоскости теплового контакта с источником теплоты 4 (необходимое число пластин 2N, где N - натуральное число, предварительно рассчитывается). Верхнюю плоскость эталонного образца 2 приводят в тепловой контакт с источником теплоты 4. На него устанавливают исследуемый образец 1 с предварительно измеренной толщиной h, создавая тепловой контакт с источником теплоты 4. На верхнюю поверхность исследуемого образца 1 устанавливают термостат 6, создавая тепловой контакт с исследуемым образцом 1. Боковые поверхности исследуемого образца 1 и эталонного образца 2 окружают адиабатической оболочкой 8, исключающей теплообмен с внешней средой. С помощью источника давления 7 прижимают термостат 6, исследуемый образец 1, источник теплоты 4 и эталонный образец 2 к термостату 5 с допустимым давлением pд. Устанавливают с помощью термостатов 5 и 6 заданную температуру внешних поверхностей исследуемого образца 1 и эталонного образца 2. С помощью источника теплоты 4 генерируют тепловой поток с заданной плотностью q и после установления стационарного режима измеряют перепад температуры ΔТ и определяют искомое значение теплопроводности исследуемого образца 1 по формуле (2).

Предварительно вместо исследуемого образца 1 устанавливают половину пластин эталонного образца 2, определяют среднее тепловое сопротивление образцов Rc, каждый из которых содержит N пластин, по формуле (1). Затем используют полученное значение в формуле (2): Rэ = 2Rc.

В заявляемом способе с учетом того, что характер изменения температуры по нормали к плоскости пластин подчиняется линейному закону, на каждой i-й пластине эталонного образца, содержащего 2N одинаковых пластин из однородного вещества толщиной hi, перепад температуры будет в 2N раз меньше, чем на эталонном образце:

ΔТi = ΔТ/2N. (8)

По формуле (7) давление pi, с помощью которого удастся скомпенсировать эту температурную деформацию изгиба i-й пластины круглого эталонного образца, составит

Давление, необходимое для компенсации температурной деформации изгиба 2N пластин эталонного образца p2N с учетом правила аддитивности сложения сил, составит:

или, используя выражение (8):

Если считать давление равным допускаемому: p2N = рд, то совместное решение уравнений (7) и (11) относительно hi позволяет определить, какой следует выбрать толщину i-й пластины, чтобы согласно предлагаемому способу определить значение λ при допустимом давлении на исследуемый образец и полной компенсации температурной деформации изгиба эталонного образца:

. (12)

Подстановка численных значений из рассмотренного выше примера дает значение hi = 3 ÷ 5 мм. Всего эталонный образец должен содержать пластин, что для данного примера составит 6 ÷ 10 штук. При этом погрешность, обусловленная температурной деформацией изгиба эталонного образца и составляющая в примере для прототипа значение 10 %, согласно предлагаемому способу полностью устранена.

Таким образом, видно, что приведенные выше сведения подтверждают возможность осуществления заявляемого изобретения, достижения указанного технического результата и решения поставленной задачи.

Способ определения теплопроводности материалов, заключающийся в том, что исследуемый плоский образец известной толщины через источник теплоты с заданной плотностью теплового потока приводят в тепловой контакт по плоскости с плоским эталонным образцом, термостатируют при заданной температуре внешние плоскости исследуемого и эталонного образцов с теплоизолированными боковыми поверхностями и измеряют температуру в плоскости контакта, отличающийся тем, что эталонный образец формируют из двух идентичных пакетов, содержащих уложенные одна на другую параллельно плоскости теплового контакта плоские пластины, толщина которых определяется допускаемым для исследуемого образца давлением, причем один из пакетов предварительно устанавливают вместо исследуемого образца, определяют среднее тепловое сопротивление обоих пакетов и используют его двойное значение при определении теплопроводности исследуемого образца.



 

Похожие патенты:

Изобретение относится к области тепловых испытаний теплоизоляционных материалов. .

Изобретение относится к строительной технике и может быть преимущественно использовано для измерения теплофизических характеристик различных строительных конструкций, например, стен, потолков, полов, переборок, подволоков и др.

Изобретение относится к строительной технике и может быть преимущественно использовано для измерения теплофизических характеристик различных строительных конструкций, например стен, потолков, полов, переборок, подволоков и др.

Изобретение относится к области исследования и анализа теплофизических свойств материалов и может быть использовано при определении коэффициента теплопроводности сверхтонких жидких теплоизоляционных покрытий - u.

Изобретение относится к области термометрии и может быть использовано при определении сопротивления теплопередаче строительной конструкции. .

Изобретение относится к области приборостроения и может быть использовано при определении коэффициента излучения поверхности материалов. .

Изобретение относится к области измерения теплофизических свойств ограждающих конструкций строительных сооружений и может быть использовано для определения их количественных характеристик в условиях нестационарного теплообмена с окружающей средой.

Изобретение относится к области теплофизических измерений и может быть использовано при неразрушающем контроле параметра тепловой активности горных пород. .

Изобретение относится к способам измерения теплофизических свойств веществ. .

Изобретение относится к нестационарным способам определения теплофизических свойств твердых тел. .

Изобретение относится к области тепловых испытаний и может быть использовано для испытаний теплозащиты летательных аппаратов (ЛА) для определения ее теплофизических свойств и работоспособности

Изобретение относится к стационарным способам определения теплопроводности плоских однослойных конструкций и может быть использовано в строительстве и теплоэнергетике

Изобретение относится к области исследования теплофизических свойств материалов и может быть использовано при определении коэффициента эффективности сверхтонких жидких теплоизоляционных покрытий - u

Изобретение относится к области приборостроения и может быть использовано в промысловой геофизике для оценки глубинных тепловых полей, процессов мембранного разделения в химической промышленности и других отраслях

Изобретение относится к области изучения физических свойств пористых неоднородных материалов и может быть использовано для определения характеристик порового пространства и теплопроводности образцов горных пород и минералов

Изобретение относится к области физико-химического анализа и может быть использовано при тепловых испытаниях. Исследуемое тело приводят в тепловой контакт с эталонным телом по плоскости, в которой находится локальный круглый нагреватель. Через равные промежутки времени измеряют разность значений температуры между нагревателем и точкой плоскости контакта исследуемого и эталонного тел. Испытания заканчивают при превышении контролируемым динамическим параметром заданного значения. Строят зависимость текущего значения тепловой активности от температуры исследуемого тела. Структурные переходы в полимерных материалах определяют по наличию пиков на зависимости текущего значения тепловой активности от температуры исследуемого тела. 1 табл., 9 ил.

Изобретение относится к области технической физики и может быть использовано при прогнозировании эксплуатационных характеристик композиционных материалов. Заявлено устройство для определения коэффициента теплопроводности материала методом плоского горизонтального слоя, содержащее элемент, исключающий боковые тепловые потери, измерительный блок с нагревателем, измерительную ячейку, предназначенную для расположения образца исследуемого материала и выполненную в виде двух функционально независимых элементов, одного с функцией нагрева, другого - охлаждения, которые расположены соосно и с заданным зазором, обеспечивающим тепловой контакт, термопару, подключенную к измерительному блоку. Элемент измерительной ячейки с функцией охлаждения выполнен в виде соосно расположенных друг в друге колец внутреннего и внешнего. Кольца внутреннее и внешнее и объем между ними выполнены с возможностью заполнения одной и той же легко испаряющейся жидкостью с углом смачивания на образце исследуемого материала не более 90°. Расположены упомянутые кольца на лицевой стороне образца исследуемого материала, а термопара расположена с противоположной стороны образца исследуемого материала. Технический результат: повышение точности экспресс-измерений для определения коэффициента теплопроводности материала. 8 з.п. ф-лы, 1 ил.

Использование: для неразрушающего контроля теплофизических характеристик строительных материалов и изделий. Сущность: заключается в том, что перпендикулярно поверхности исследуемого изделия воздействуют импульсом высокочастотного электромагнитного поля СВЧ-диапазона по линии заданной длины, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела по плоскости, перпендикулярной плоскости внешней поверхности исследуемого объекта и уходящей внутрь него, причем для организации такого воздействия электромагнитное излучение рупорной антенны СВЧ-генератора фокусируют с использованием рупорно-линзовой антенны в линию заданной длины, измеряют в заданный момент времени после воздействия импульса СВЧ-излучения избыточную температуру на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся, соответственно, на расстояниях x1 и x2 от плоскости высокочастотного электромагнитного воздействия, длину волны и мощность электромагнитного СВЧ-излучения задают такими, чтобы глубина проникновения электромагнитного поля была не менее, чем на порядок больше заданных расстояний x1 и x2 до точек контроля температуры, имея информацию о мощности теплового воздействия на исследуемое изделие в плоскости СВЧ-нагрева и измеренных в заданный момент времени значений избыточных температур в точках контроля, искомые теплофизические характеристики определяют на основе полученных математических соотношений. Технический результат: повышение оперативности и точности определения теплофизических характеристик строительных материалов. 2 з.п. ф-лы, 5 ил., 3 табл.
Изобретение относится к измерительной технике, а именно к способам определения физических свойств материалов путем тепловых и электрических измерений, и может быть использовано для оперативного контроля теплотехнических качеств ограждающих конструкций зданий и сооружений в натурных условиях. Способ неразрущающего контроля теплотехнических качеств ограждающих конструкций зданий заключается в том, что измеряют фактические значения теплопроводности внутреннего и наружного поверхностных слоев конструкции. Затем вычисляют значения сопротивлений теплопередаче этих слоев по формулам: Rв=δв/λв и Rн=δн/λн, где Rв и Rн - значения сопротивлений теплопередаче внутреннего и наружного поверхностных слоев конструкции, соответственно; δв и δн - толщина внутреннего и наружного поверхностных слоев, соответственно; λв и λн - теплопроводность внутреннего и наружного поверхностных слоев, соответственно. Далее вычисляют значение сопротивления теплопередаче теплоизоляционного слоя по формуле: Rт=Rк-1/αв-1/αн-Rв-Rн, где Rт - сопротивление теплопередаче теплоизоляционного слоя; Rk - общее сопротивление теплопередаче конструкции; αв, αн - коэффициенты теплоотдачи внутренней и наружной поверхностей конструкции, соответственно. Затем вычисляют фактическое значение теплопроводности материала теплоизоляционного слоя конструкции по формуле: λт,=δт/Rт, где λт - теплопроводность материала; δт - толщина слоя. После чего определяют фактическое значение влажности материала теплоизоляционного слоя по формуле: Wт=(λт-λ0)/Δλw, где Wt - влажность материала; λ0 теплопроводность материала в сухом состоянии; Δλw - приращение теплопроводности материала на 1% влажности. Техническим результатом изобретения является определение теплофизических характеристик теплоизоляционного слоя многослойных строительных конструкций без нарушения их целостности. 1 з.п. ф-лы.

Изобретение относится к области термометрии и может быть использовано для определения коэффициента теплопроводности частично прозрачных керамических и стеклообразных материалов с учетом их прозрачности. Способ включает нестационарный нагрев поверхности образца в виде пластины радиационными импульсами, измерение температуры в не менее трех точках по толщине образца с последующим вычислением искомой величины посредством решения коэффициентной обратной задачи теплопроводности. Интервалы между импульсами составляют 5-10 секунд, при этом измерение температуры производится синхронно в момент окончания импульса. Технический результат: снижение погрешности определения коэффициента теплопроводности частично прозрачных материалов более чем в 2 раза. 2 ил.
Наверх