Способ определения коэффициента теплопроводности частично прозрачных материалов

Изобретение относится к области термометрии и может быть использовано для определения коэффициента теплопроводности частично прозрачных керамических и стеклообразных материалов с учетом их прозрачности. Способ включает нестационарный нагрев поверхности образца в виде пластины радиационными импульсами, измерение температуры в не менее трех точках по толщине образца с последующим вычислением искомой величины посредством решения коэффициентной обратной задачи теплопроводности. Интервалы между импульсами составляют 5-10 секунд, при этом измерение температуры производится синхронно в момент окончания импульса. Технический результат: снижение погрешности определения коэффициента теплопроводности частично прозрачных материалов более чем в 2 раза. 2 ил.

 

Изобретение относится к методам определения коэффициента теплопроводности частично прозрачных керамических и стеклообразных материалов с учетом их прозрачности.

Известен способ определения коэффициента теплопроводности частично прозрачных материалов стационарным методом плоского слоя, при котором образец нагревают изотермическим радиационным нагревателем, а коэффициент теплопроводности определяют по температуре нагревателя и полному потоку энергии (Авт. свид. СССР №473940, 1975, G01N 25/18). Недостатком этого способа является использование стационарного метода определения коэффициента теплопроводности, который требует больших временных затрат для получения температурной зависимости коэффициента теплопроводности в широком диапазоне температур.

Наиболее близким по технической сущности является способ определения коэффициента теплопроводности материала в условиях нестационарного одностороннего нагрева, основанный на решении коэффициентной обратной задачи теплопроводности (КОЗТ), при этом требующий меньших временных затрат (Анучин С.А., Степанов П.А. Методика исследований теплофизических свойств керамических материалов при высоких температурах // Новые огнеупоры. 2009. №5. С.41-43.). Однако данный способ не дает возможности учета прозрачности материала для теплового излучения, что приводит к повышению погрешности при определении коэффициента теплопроводности в частично прозрачных материалах.

Задачей предлагаемого изобретения является повышение точности определения коэффициента теплопроводности частично прозрачных материалов. Поставленная задача решается тем, что предложен способ определения коэффициента теплопроводности частично прозрачных материалов, включающий нестационарный нагрев образца, измерение температуры, определение температурной зависимости коэффициента теплопроводности посредством решения КОЗТ, отличающийся тем, что нагрев осуществляют радиационными импульсами с интервалами между ними 5-10 секунд, при этом измерение температуры производят синхронно в момент окончания импульса.

Изобретение поясняется конкретным примером определения коэффициента теплопроводности частично прозрачного материала.

В качестве исследуемого образца использовано кварцевое стекло марки KB (ГОСТ 15130-86). Образец представлял из себя сборку, составленную из нескольких пластин, размерами (50×50×10) мм, термопары размещались на фронтальной и тыльной поверхностях сборки и между пластинами сборки. Для данного образца нагрев осуществлялся радиационными импульсами с периодом следования 50-100 секунд с интервалами между ними 5-10 секунд, что достигалось модуляцией падающего теплового потока путем периодического отключения нагревателя. На фиг.1 представлены зависимости показаний термопар от времени нагрева, заделанных на фронтальной поверхности сборки (1), между пластинами сборки (2), на тыльной поверхности сборки (3) и зависимость мощности нагревателя от времени (4). На фиг.2 представлены результаты расчета коэффициента теплопроводности, полученные путем решения КОЗТ, по способу, изложенному в прототипе (1), по предложенному способу (2), при этом значения коэффициента теплопроводности кварцевого стекла по ГОСТ 15130-86 отражены зависимостью 3. Предлагаемый способ позволяет снизить погрешность определения коэффициента теплопроводности более чем в 2 раза.

Способ определения коэффициента теплопроводности частично прозрачных материалов, включающий нестационарный радиационный нагрев поверхности образца в виде пластины, измерение температуры в не менее трех точках по толщине образца с последующим вычислением искомой величины посредством решения коэффициентной обратной задачи теплопроводности, отличающийся тем, что нагрев осуществляют импульсами с интервалами между ними 5-10 с, при этом измерение температуры производят синхронно в момент окончания импульса.



 

Похожие патенты:
Изобретение относится к измерительной технике, а именно к способам определения физических свойств материалов путем тепловых и электрических измерений, и может быть использовано для оперативного контроля теплотехнических качеств ограждающих конструкций зданий и сооружений в натурных условиях.

Использование: для неразрушающего контроля теплофизических характеристик строительных материалов и изделий. Сущность: заключается в том, что перпендикулярно поверхности исследуемого изделия воздействуют импульсом высокочастотного электромагнитного поля СВЧ-диапазона по линии заданной длины, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела по плоскости, перпендикулярной плоскости внешней поверхности исследуемого объекта и уходящей внутрь него, причем для организации такого воздействия электромагнитное излучение рупорной антенны СВЧ-генератора фокусируют с использованием рупорно-линзовой антенны в линию заданной длины, измеряют в заданный момент времени после воздействия импульса СВЧ-излучения избыточную температуру на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся, соответственно, на расстояниях x1 и x2 от плоскости высокочастотного электромагнитного воздействия, длину волны и мощность электромагнитного СВЧ-излучения задают такими, чтобы глубина проникновения электромагнитного поля была не менее, чем на порядок больше заданных расстояний x1 и x2 до точек контроля температуры, имея информацию о мощности теплового воздействия на исследуемое изделие в плоскости СВЧ-нагрева и измеренных в заданный момент времени значений избыточных температур в точках контроля, искомые теплофизические характеристики определяют на основе полученных математических соотношений.

Изобретение относится к области технической физики и может быть использовано при прогнозировании эксплуатационных характеристик композиционных материалов. Заявлено устройство для определения коэффициента теплопроводности материала методом плоского горизонтального слоя, содержащее элемент, исключающий боковые тепловые потери, измерительный блок с нагревателем, измерительную ячейку, предназначенную для расположения образца исследуемого материала и выполненную в виде двух функционально независимых элементов, одного с функцией нагрева, другого - охлаждения, которые расположены соосно и с заданным зазором, обеспечивающим тепловой контакт, термопару, подключенную к измерительному блоку.

Изобретение относится к области физико-химического анализа и может быть использовано при тепловых испытаниях. Исследуемое тело приводят в тепловой контакт с эталонным телом по плоскости, в которой находится локальный круглый нагреватель.

Изобретение относится к области изучения физических свойств пористых неоднородных материалов и может быть использовано для определения характеристик порового пространства и теплопроводности образцов горных пород и минералов.

Изобретение относится к области приборостроения и может быть использовано в промысловой геофизике для оценки глубинных тепловых полей, процессов мембранного разделения в химической промышленности и других отраслях.

Изобретение относится к области исследования теплофизических свойств материалов и может быть использовано при определении коэффициента эффективности сверхтонких жидких теплоизоляционных покрытий - u.

Изобретение относится к стационарным способам определения теплопроводности плоских однослойных конструкций и может быть использовано в строительстве и теплоэнергетике.

Изобретение относится к области тепловых испытаний и может быть использовано для испытаний теплозащиты летательных аппаратов (ЛА) для определения ее теплофизических свойств и работоспособности.

Изобретение относится к области теплофизических измерений и может быть использовано для определения теплопроводности материалов. .

Изобретение относится к газоизмерительному устройство для измерения присутствия заданного газа в текучей среде. Устройство содержит датчик, имеющий чувствительный элемент и нагревательный элемент, сконфигурированный для нагрева чувствительного элемента до предварительно заданной рабочей температуры, причем чувствительный элемент является восприимчивым к заданному газу таким образом, что, по меньшей мере, одно электрическое свойство чувствительного элемента изменяется в зависимости от присутствия заданного газа, причем электрическое свойство чувствительного элемента измеряется газоизмерительным устройством; и цепь управления, имеющую контроллер нагревательного элемента, связанный с нагревательным элементом и измеряющий его электрическое свойство, причем цепь управления имеет источник энергии подогрева, подающий энергию к нагревательному элементу, причем контроллер нагревательного элемента связан с источником энергии подогрева и регулирует его работу в зависимости от измерения электрического свойства нагревательного элемента; средство импульсной модуляции, соединенное с контроллером нагревательного элемента, источником энергии подогрева для управления величиной энергии, подаваемому к нагревательному элементу. При этом средство импульсной модуляции выполнено с возможностью формирования первого набора импульсов энергии, имеющего определенную продолжительность, и второго набора импульсов энергии, имеющего другую, более короткую продолжительность для поддержания температуры нагревательного элемента, по существу, на постоянном уровне. Также изобретение относится к способу изготовления и способу работы газоизмерительного устройства. Предлагаемое устройство изготавливается и эксплуатируется рентабельным и надежным образом. 3 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к нестационарным способам определения теплопроводности сыпучих материалов и может применяться при изучении термических свойств почв, рыхлых горных пород, сыпучих строительных и прочих дисперсных материалов. Сущность способа заключается в предварительном нагреве до требуемой температуры металлической пластины и ее последующем погружении в слой сыпучего материала, расположенного в опытной площадке, которая изнутри покрыта слоем теплогидроизоляции. Контроль за равномерным нагревом металлической пластины до требуемой температуры осуществляют бесконтактным способом с помощью инфракрасного термометра. Нижняя кромка металлической пластины заточена под углом 45°. Термопреобразователи, установленные в сыпучем материале и в толще металлической пластины по центру, регистрируют с определенной дискретностью и продолжительностью во времени тепловые режимы нагрева сыпучего материала и охлаждения металлической пластины. С учетом измеренных параметров рассчитывают коэффициент теплопроводности сыпучего материала. Технический результат: повышение точности измерения коэффициента теплопроводности сыпучего материала при нестационарном тепловом режиме. 5 ил.

Изобретение относится к нестационарным способам определения температуропроводности твердых тел и может применяться в строительстве и теплоэнергетике при проведении тепловых испытаний однородных строительных объектов, теплопроводных и теплоизоляционных материалов. Сущность заявленного способа заключается в нагреве твердого тела с помощью бесконтактного теплового воздействия на переднюю лицевую поверхность последнего источником инфракрасного излучения. Температурное поле твердого тела регистрируют с помощью системы термопреобразователей в течение нестационарного теплового режима, определяемого расчетным способом. По экспериментальным данным строят одномерное нестационарное температурное поле твердого тела. По результатам построения температурного поля твердого тела в режиме нагрева и дифференциальному уравнению теплопроводности вычисляют коэффициент температуропроводности твердого тела. Технический результат: повышение точности измерения коэффициента температуропроводности твердого тела при нестационарном тепловом режиме. 6 ил.

Использование: для определения теплопроводности керна. Сущность: заключается в том, что подготавливают образец керна и рентгеновский микрокомпьютерный томограф для сканирования указанного образца керна и получения изображения для каждого сканирования, сканируют указанный образец керна, передают для обработки трехмерное сканированное изображение с томографа на компьютер, предназначенный для анализа изображений, задают толщину слоя внутри полученного трехмерного сканированного изображения для анализа, определяют слой с максимальной теплостойкостью внутри полученного трехмерного сканированного изображения и определяют эффективную теплопроводность образца керна. Технический результат: обеспечение возможности быстрой оценки эффективной теплопроводности, не требующей численного решения уравнения теплопроводности. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной техники и может быть использовано для технической диагностики неоднородных конструкций. Устройство для определения сопротивления теплопередачи многослойной конструкции включает датчики температуры и теплового потока и тепловизионное устройство. Согласно изобретению включены счетчик времени измерения, блоки вычисления сопротивления теплопередачи, блок вычисления изменения сопротивления теплопередачи, блок сравнения изменения сопротивления теплопередачи и максимального изменения сопротивления теплопередачи, блок присвоения сопротивления теплопередачи, счетчик периодов времени и блок вычисления приведенного сопротивления теплопередачи. Технический результат - повышение точности результатов исследования. 1 з.п. ф-лы, 14 ил., 2 табл.

Группа изобретений относится к измерительной технике и может быть использована при решении задач энергетического аудита. Заявлен способ и устройство интеллектуального энергосбережения, согласно которым измеряют температуру теплоносителя на входе и выходе энергопотребляющего объекта, измеряют массу теплоносителя за определенный промежуток времени, определяют количество энергии, потребляемой объектом. Последовательно измеряют значения температуры на противоположных сторонах конструкции, тепловой поток на внутренней стороне конструкции и наружной стороне конструкции на противоположной стороне. Определяют сопротивление теплопередачи многослойной конструкции в точке контролируемого участка поверхности исследуемого объекта для каждого интервала измерения. Проводят тепловизионное обследование путем измерения температурного поля поверхности с пространственным периодом, определяемым размерами минимального дефекта конструкции. Определяют приведенное сопротивление теплопередаче по всей поверхности исследуемого объекта в произвольных координатах. Определяют сверхнормативные потери тепла. Определяют энергоэффективность по отношению к сверхнормативным потерям тепла и осуществляют формирование управляющего воздействия для интеллектуализации энергосбережения. Технический результат: повышение эффективности энергосбережения. 2 н. и 7 з.п. ф-лы, 15 ил, 1 табл.

Изобретение относится к области тепловых измерений и может быть при изучении особенностей нестационарного теплового режима, нахождении теплового баланса и определении теплофизических показателей твердых материалов различного предназначения. Сущность заявленного способа заключается в формировании нестационарного теплового режима твердого тела с помощью бесконтактного неразрушающего теплового воздействия на переднюю лицевую поверхность твердого тела источником инфракрасного излучения. Температурное состояние твердого тела регистрируют в фиксированных точках координатного пространства по схеме: в толще твердого тела при y=0 и z=0 на участке x∈[0, δ], где δ - толщина твердого тела, в точках в количестве N+1 с координатами x=0, δ/N, 2δ/N, …, (N-1)δ/N, δ; на поверхностях твердого тела при x=0 и x=δ в координатах, удовлетворяющих условиям |y|≤(0,9÷0,95)a и z≤(0,8÷0,9)b, где a и b - геометрические характеристики поверхностей твердого тела. На основании экспериментальных данных строят нестационарное температурное поле твердого тела по пространственно-временным координатам. Технический результат - повышение точности получаемых данных. 7 ил., 1 табл.

Изобретение относится к области исследования изменения теплофизических свойств конструкционных материалов при нанообработке нестационарным методом неразрушающего контроля. Способ состоит в воздействии тепловым импульсом на поверхность образца, регистрации температуры и временного интервала от начала теплового воздействия до достижения температурой в точке регистрации заранее заданного значения. На контактную зону воздействуют тепловым импульсом через индентор, закрытый термоизолятором и имеющий встроенные датчик температуры, нагреватель, и сферическую рабочую часть индентора, выполненную из природного алмаза, которую вдавливают в обработанный поверхностный слой с силой, обеспечивающей заданную длину пятна контакта, нагревают до определенного фиксированного значения температуры, выключают нагреватель и регистрируют время, за которое температура уменьшится до заданного уровня, и по формуле определяют коэффициент теплопроводности. Технический результат - повышение точности определения коэффициента теплопроводности. 1 ил.

Изобретение относится к области технической физики, в частности к тепловым методам исследования материалов, и может быть использовано для определения удельной теплоемкости материалов. Заявлен способ определения удельной теплоемкости материалов, заключающийся в том, что формируют первый и второй идентичные исследуемые образцы из сыпучих или пористых материалов. Приводят их в тепловой контакт по плоскости с источником теплоты. Внешние поверхности образцов приводят в тепловой контакт с эталонными образцами, а внешние поверхности эталонных образцов приводят в тепловой контакт с источниками теплоты. Подводят теплоту к образцам и регистрируют удельную мощность источников теплоты. Измеряют с постоянным шагом во времени температуру, удельный объем твердой фазы образцов, тепловые потоки с тех поверхностей плоских источников теплоты, которые не приведены в тепловой контакт с эталонными образцами. Определяют тепловые потоки через исследуемые образцы и вычисляют удельную теплоемкость. Технический результат - повышение точности определения удельной теплоемкости пористых, волокнистых и сыпучих материалов. 2 ил.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для определения теплового сопротивления и теплопроводности строительных конструкций. Согласно заявленному способу определения теплопроводности и теплового сопротивления строительной конструкции на сторонах строительной конструкции 1 устанавливают теплоизолированные нагревательные элементы 2, 3. С помощью нагревательных узлов 8, 9 и систем термостабилизации 10, 11 стороны конструкции 1 термостатируются при температурах Т1 и Т2 в течение времени τ. Время τ определяется по формуле τ=4·105·h2, где h - толщина конструкции 1. По истечении времени τ датчиками теплового потока 6 и 7 измеряют тепловые потоки q1 и q2 через строительную конструкцию. Далее определяют теплопроводность λ материала конструкции по формуле λ = ( q 1 + q 2 ) ⋅ h 2 ⋅ ( T 1 − T 2 )                             ( 1 ) , а тепловое сопротивление R - по формуле R = 2 ⋅ ( T 1 − T 2 ) q 1 + q 2                             ( 2 ) . Технический результат - повышение точности данных исследований. 5 ил.
Наверх