Установка для испытаний теплозащиты летательного аппарата

Изобретение относится к области тепловых испытаний и может быть использовано для испытаний теплозащиты летательных аппаратов (ЛА) для определения ее теплофизических свойств и работоспособности. Заявленное устройство содержит тепловакуумную камеру с помещенным в нее измерительным модулем, в котором установлены высокотемпературный нагреватель, расположенный между двух испытываемых фрагментов теплозащиты, за которыми установлены два калориметра с термопарами и охранная теплоизоляция, и автоматизированную систему управления нагревом и измерений. Калориметры установлены относительно испытываемых фрагментов теплозащиты с зазором, а на противолежащие поверхности фрагмента и калориметра нанесены терморегулирующие покрытия. Калориметры разделены на секции. Автоматическая система снабжена блоком для регулирования давление газа в термовакуумной камере и в измерительном модуле. Технический результат: повышение точности результатов испытаний за счет приближения условий испытаний теплозащиты ЛА к натурным. 1 ил.

 

Изобретение относится к испытаниям фрагментов конструкции ЛА с теплозащитой, а именно к устройствам, предназначенным для исследования теплопроводности и работоспособности теплозащиты (или теплоизоляции).

Известна установка [ИСО 8302: 1991. Теплоизоляция. Определение термического сопротивления и связанных с ним теплофизических показателей. Прибор с горячей охранной зоной] для определения теплофизических характеристик неметаллических материалов, содержащая плоский нагреватель, установленный между двух испытуемых образцов и расположенных за ними двух плоских термостатов. На установке измеряется только количество тепла, подведенное к образцам. Установка не может использоваться для испытания образцов материалов, в которых наряду с теплопереносом имеют место процессы тепломассообмена.

Известна установка [Алифанов О.М., Будник С.А., Михайлов В.В., Ненарокомов А.В. Экспериментально-вычислительный комплекс для исследования теплофизических свойств теплотехнических материалов // Тепловые процессы в технике. 2009. T.1. №2. С.49-60] для исследований теплофизических свойств теплозащитных и теплоизоляционных материалов. Установка содержит тепловакуумную камеру, плоский высокотемпературный нагреватель, установленный между двух испытуемых образцов и расположенных за ними двух плоских калориметров, термопары, охранную теплоизоляцию, измерительный модуль для сборки нагревателя, испытуемых образцов и калориметров и установки их в камеру, автоматизированную систему управления нагревом, измерений и обработки результатов. Калориметры выполнены из тонкой медной фольги и непосредственно прижаты к испытуемым образцам. К калориметрам, в свою очередь, с другой стороны пристыкована теплоизоляция. Таким образом, граничным условием для этой стороны образца является теплоизолированная стенка. В реальных условиях работы теплозащиты ЛА имеет место теплоотвод внутрь защищаемого отсека. При воспроизведении реального нагрева "горячей" поверхности образцов будет иметь место перегрев "холодной" поверхности. Это отличие от реальной температуры будет сказываться на процессе тепломассообмена, связанного с диффузией из горячей зоны паров воды и конденсацией их на "холодной" стороне. Таким образом, определяемый эффективный коэффициент теплопроводности будет отличаться от истинного, особенно на начальном участке траекторного нагрева, когда "горячая" поверхность быстро нагревается, а внутренние слои имеют температуру ниже температуры конденсации паров воды при давлении в камере. Этому же способствует и отсутствие регулирования давления газа в процессе эксперимента, так как это в свою очередь определяет температуру конденсации.

Целью изобретения является максимальное приближение условий испытания теплозащиты ЛА к натурным путем воспроизведения на "холодной" стороне испытуемого фрагмента теплозащиты тепловых потоков и температур, соответствующих условиям теплообмена на границе между теплозащитой и защищаемой ею конструкцией ЛА.

Это достигается тем, что калориметр устанавливается на определенном расстоянии от фрагмента теплозащиты. Величина зазора между ними вместе с давлением газа определяют конвективную составляющую теплового потока и составляющую за счет теплопроводности газа. Степени черноты противолежащих поверхностей в зазоре определяют лучистую составляющую теплообмена между теплозащитой и калориметром. Толщина калориметра, а следовательно и его теплоемкость, позволяют ему аккумулировать тепловой поток, прошедший через теплозащиту, и имитировать в течение эксперимента поглощение тепла защищаемой конструкцией, например поглощение тепла системой терморегулирования отсека ЛА. Поэтому величина зазора, степень черноты покрытий, наносимых на «холодную» поверхность теплозащиты и на обращенную к ней поверхность калориметра, и толщина калориметра определяются из заданных условий теплообмена на границе между теплозащитой и защищаемой ею конструкцией летательного аппарата.

Пример. Заданы граничные условия теплоотвода от оболочки с теплозащитой в отсек, определяемые системой терморегулирования отсека:

- тепловой поток внутрь отсека в полете ≈800 Вт/м2;

- температура оболочки ≈373 K;

- время полета 500 сек.

На основании расчета выбираем:

- зазор между калориметром и фрагментом 10 мм;

- толщина калориметра 10 мм;

- материал калориметра - медь;

- на тепловоспринимающую поверхность калориметра наносим термостойкую краску со степенью черноты ε=0.9;

- на подложку фрагмента наносим термостойкую краску со степенью черноты ε=0.9;

- среда - воздух при давлении 0,1 МПа.

При начальной температуре калориметра 296 K тепловой поток, отводимый от фрагмента и воспринимаемый калориметром, составит 875 Вт/м2 (погрешность +9,4%). Из них 324 Вт/м2 за счет теплопроводности газа и свободной конвекции в щели, образованной зазором, а 551 Вт/м2 за счет лучистого теплообмена между окрашенными поверхностями (ε=0.9) с приведенной степенью черноты εпр=0,818. За 500 сек температура калориметра повысится на 12 K. В конце траектории отводимый суммарный тепловой поток составит 753 Вт/м2 (погрешность - 5.9%).

Для обеспечения точности измерений теплоемким калориметром он выполнен разделенным на секции: выделена центральная более горячая секция и концентрично ей три рамки секций напротив крайних участков фрагментов теплозащиты, а на центральную секцию помимо термопар установлен термометр сопротивления. В отличие от термопар при относительно низких температурах (до 973 K, О.А.Геращенко, В.Г.Федоров. Тепловые и температурные измерения. Справочное руководство. «Наукова думка», Киев, 1965, стр.49, 85) термометры сопротивления имеют преимущество и обеспечивают чувствительность при 24-разрядной системе измерений ≤0,001 K. Для обеспечения реальных условий тепломассообмена внутри испытываемой теплозащиты по траектории полета тепловакуумная камера дополнительно снабжена пневмосистемой и системой автоматического регулирования в ней давления газа по заданному режиму.

Установка содержит тепловакуумную камеру с помещенным в нее измерительным модулем, в котором установлены высокотемпературный нагреватель, расположенный между двух испытываемых фрагментов теплозащиты, за которыми установлены два калориметра с термопарами и охранная теплоизоляция, и автоматизированную систему управления нагревом, давлениями и измерений.

На чертеже представлена схема измерительной части установки, а именно измерительный модуль 12 с двумя испытываемыми фрагментами 1, пластинчатым нагревателем 2 между ними и двумя калориметрами 3. Фрагменты 1 состоят из слоя теплозащиты 1-1 и подложки 1-2, имитирующей герметичную оболочку корпуса защищаемой конструкции ЛА. Размер фрагментов 400×400×δ (50÷60) мм. Фрагменты через герметизирующие теплоизоляционные прокладки 14 стыкуются с металлическими половинами корпуса измерительного модуля 12. Калориметры разделены на секции: центральную (100×100) мм и три концентричные ей секции в виде рамок шириной по 50 мм. Между калориметрами и фрагментами теплозащиты имеется зазор 4. На противолежащие в зазоре поверхности теплозащиты и калориметра нанесены покрытия 5 и 6 соответственно с определенными степенями черноты. Обратная сторона 7 калориметров полированная. Напротив нее располагается слой 8 охранной теплоизоляции, покрытый отражающим экраном 9 из алюминиевой фольги. На фрагменты теплозащиты, калориметры и теплоизоляцию установлены термопары 10. На центральные секции калориметров помимо термопар установлены термометры сопротивления 11. Оба герметичных пространства измерительного модуля через трубки 13 соединены с системой подачи газа.

Установка работает следующим образом. Измерительный модуль 12 с помещенными в него испытываемыми фрагментами 1, нагревателем 2, калориметрами 3 устанавливается в термовакуумную камеру. Автоматическая система нагрева по показаниям термопар на "горячей" поверхности теплозащиты регулирует электропитание нагревателя и обеспечивает заданный полетный температурный режим. Одновременно регистрируется количество тепла, поступившего от нагревателя во фрагменты теплозащиты.

Автоматическая система давления регулирует работу вакуумной и пневматической систем и обеспечивает заданное изменение давления в герметичных пространствах измерительного модуля и в тепловакуумной камере. В измерительном модуле поддерживается расчетное давление, обеспечивающее заданный тепловой поток между фрагментом и калориметром, а в тепловакуумной камере поддерживается давление начиная от атмосферного в начале старта и далее по траектории полета. Количество тепла, прошедшее через фрагменты теплозащиты, аккумулируется и измеряется калориметрами, одновременно имитирующими отвод тепла в конструкцию ЛА.

По результатам измерения подведенного и прошедшего через конструкцию количества тепла и измерений температур судят о коэффициенте эффективной теплопроводности теплозащиты и ее работоспособности.

Таким образом, условия испытаний теплозащиты ЛА приближаются к натурным за счет воспроизведения реальных условий теплообмена на "холодной" поверхности фрагмента и соответственно тепломассообмена внутри теплозащиты и реального прогрева конструкции.

Установка для испытаний теплозащиты летательного аппарата, содержащая тепловакуумную камеру с помещенным в нее измерительным модулем, в котором установлены высокотемпературный нагреватель, расположенный между двух испытываемых фрагментов теплозащиты, за которыми установлены два калориметра с термопарами и охранная теплоизоляция, и автоматизированную систему управления нагревом и измерений, отличающаяся тем, что калориметры установлены относительно испытываемых фрагментов теплозащиты с зазором, а на противолежащие поверхности фрагмента и калориметра нанесены терморегулирующие покрытия, калориметры разделены на секции, на центральных секциях калориметров установлены термометры сопротивления, полости между фрагментами теплозащиты и корпусом измерительного модуля выполнены герметичными и соединены с дополнительно установленной системой подачи газа, автоматическая система снабжена блоком для регулирования давление газа в термовакуумной камере и в измерительном модуле, а величина давления в измерительном модуле, степень черноты терморегулирующих покрытий, толщина калориметров и величина зазора определены из условия равенства теплового потока между фрагментом теплоизоляции и калориметром тепловому потоку в полете на границе между теплозащитой и защищаемой ею конструкцией летательного аппарата.



 

Похожие патенты:

Изобретение относится к области теплофизических измерений и может быть использовано для определения теплопроводности материалов. .

Изобретение относится к области тепловых испытаний теплоизоляционных материалов. .

Изобретение относится к строительной технике и может быть преимущественно использовано для измерения теплофизических характеристик различных строительных конструкций, например, стен, потолков, полов, переборок, подволоков и др.

Изобретение относится к строительной технике и может быть преимущественно использовано для измерения теплофизических характеристик различных строительных конструкций, например стен, потолков, полов, переборок, подволоков и др.

Изобретение относится к области исследования и анализа теплофизических свойств материалов и может быть использовано при определении коэффициента теплопроводности сверхтонких жидких теплоизоляционных покрытий - u.

Изобретение относится к области термометрии и может быть использовано при определении сопротивления теплопередаче строительной конструкции. .

Изобретение относится к области приборостроения и может быть использовано при определении коэффициента излучения поверхности материалов. .

Изобретение относится к области измерения теплофизических свойств ограждающих конструкций строительных сооружений и может быть использовано для определения их количественных характеристик в условиях нестационарного теплообмена с окружающей средой.

Изобретение относится к области теплофизических измерений и может быть использовано при неразрушающем контроле параметра тепловой активности горных пород. .

Изобретение относится к способам измерения теплофизических свойств веществ. .

Изобретение относится к стационарным способам определения теплопроводности плоских однослойных конструкций и может быть использовано в строительстве и теплоэнергетике

Изобретение относится к области исследования теплофизических свойств материалов и может быть использовано при определении коэффициента эффективности сверхтонких жидких теплоизоляционных покрытий - u

Изобретение относится к области приборостроения и может быть использовано в промысловой геофизике для оценки глубинных тепловых полей, процессов мембранного разделения в химической промышленности и других отраслях

Изобретение относится к области изучения физических свойств пористых неоднородных материалов и может быть использовано для определения характеристик порового пространства и теплопроводности образцов горных пород и минералов

Изобретение относится к области физико-химического анализа и может быть использовано при тепловых испытаниях. Исследуемое тело приводят в тепловой контакт с эталонным телом по плоскости, в которой находится локальный круглый нагреватель. Через равные промежутки времени измеряют разность значений температуры между нагревателем и точкой плоскости контакта исследуемого и эталонного тел. Испытания заканчивают при превышении контролируемым динамическим параметром заданного значения. Строят зависимость текущего значения тепловой активности от температуры исследуемого тела. Структурные переходы в полимерных материалах определяют по наличию пиков на зависимости текущего значения тепловой активности от температуры исследуемого тела. 1 табл., 9 ил.

Изобретение относится к области технической физики и может быть использовано при прогнозировании эксплуатационных характеристик композиционных материалов. Заявлено устройство для определения коэффициента теплопроводности материала методом плоского горизонтального слоя, содержащее элемент, исключающий боковые тепловые потери, измерительный блок с нагревателем, измерительную ячейку, предназначенную для расположения образца исследуемого материала и выполненную в виде двух функционально независимых элементов, одного с функцией нагрева, другого - охлаждения, которые расположены соосно и с заданным зазором, обеспечивающим тепловой контакт, термопару, подключенную к измерительному блоку. Элемент измерительной ячейки с функцией охлаждения выполнен в виде соосно расположенных друг в друге колец внутреннего и внешнего. Кольца внутреннее и внешнее и объем между ними выполнены с возможностью заполнения одной и той же легко испаряющейся жидкостью с углом смачивания на образце исследуемого материала не более 90°. Расположены упомянутые кольца на лицевой стороне образца исследуемого материала, а термопара расположена с противоположной стороны образца исследуемого материала. Технический результат: повышение точности экспресс-измерений для определения коэффициента теплопроводности материала. 8 з.п. ф-лы, 1 ил.

Использование: для неразрушающего контроля теплофизических характеристик строительных материалов и изделий. Сущность: заключается в том, что перпендикулярно поверхности исследуемого изделия воздействуют импульсом высокочастотного электромагнитного поля СВЧ-диапазона по линии заданной длины, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела по плоскости, перпендикулярной плоскости внешней поверхности исследуемого объекта и уходящей внутрь него, причем для организации такого воздействия электромагнитное излучение рупорной антенны СВЧ-генератора фокусируют с использованием рупорно-линзовой антенны в линию заданной длины, измеряют в заданный момент времени после воздействия импульса СВЧ-излучения избыточную температуру на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся, соответственно, на расстояниях x1 и x2 от плоскости высокочастотного электромагнитного воздействия, длину волны и мощность электромагнитного СВЧ-излучения задают такими, чтобы глубина проникновения электромагнитного поля была не менее, чем на порядок больше заданных расстояний x1 и x2 до точек контроля температуры, имея информацию о мощности теплового воздействия на исследуемое изделие в плоскости СВЧ-нагрева и измеренных в заданный момент времени значений избыточных температур в точках контроля, искомые теплофизические характеристики определяют на основе полученных математических соотношений. Технический результат: повышение оперативности и точности определения теплофизических характеристик строительных материалов. 2 з.п. ф-лы, 5 ил., 3 табл.
Изобретение относится к измерительной технике, а именно к способам определения физических свойств материалов путем тепловых и электрических измерений, и может быть использовано для оперативного контроля теплотехнических качеств ограждающих конструкций зданий и сооружений в натурных условиях. Способ неразрущающего контроля теплотехнических качеств ограждающих конструкций зданий заключается в том, что измеряют фактические значения теплопроводности внутреннего и наружного поверхностных слоев конструкции. Затем вычисляют значения сопротивлений теплопередаче этих слоев по формулам: Rв=δв/λв и Rн=δн/λн, где Rв и Rн - значения сопротивлений теплопередаче внутреннего и наружного поверхностных слоев конструкции, соответственно; δв и δн - толщина внутреннего и наружного поверхностных слоев, соответственно; λв и λн - теплопроводность внутреннего и наружного поверхностных слоев, соответственно. Далее вычисляют значение сопротивления теплопередаче теплоизоляционного слоя по формуле: Rт=Rк-1/αв-1/αн-Rв-Rн, где Rт - сопротивление теплопередаче теплоизоляционного слоя; Rk - общее сопротивление теплопередаче конструкции; αв, αн - коэффициенты теплоотдачи внутренней и наружной поверхностей конструкции, соответственно. Затем вычисляют фактическое значение теплопроводности материала теплоизоляционного слоя конструкции по формуле: λт,=δт/Rт, где λт - теплопроводность материала; δт - толщина слоя. После чего определяют фактическое значение влажности материала теплоизоляционного слоя по формуле: Wт=(λт-λ0)/Δλw, где Wt - влажность материала; λ0 теплопроводность материала в сухом состоянии; Δλw - приращение теплопроводности материала на 1% влажности. Техническим результатом изобретения является определение теплофизических характеристик теплоизоляционного слоя многослойных строительных конструкций без нарушения их целостности. 1 з.п. ф-лы.

Изобретение относится к области термометрии и может быть использовано для определения коэффициента теплопроводности частично прозрачных керамических и стеклообразных материалов с учетом их прозрачности. Способ включает нестационарный нагрев поверхности образца в виде пластины радиационными импульсами, измерение температуры в не менее трех точках по толщине образца с последующим вычислением искомой величины посредством решения коэффициентной обратной задачи теплопроводности. Интервалы между импульсами составляют 5-10 секунд, при этом измерение температуры производится синхронно в момент окончания импульса. Технический результат: снижение погрешности определения коэффициента теплопроводности частично прозрачных материалов более чем в 2 раза. 2 ил.

Изобретение относится к газоизмерительному устройство для измерения присутствия заданного газа в текучей среде. Устройство содержит датчик, имеющий чувствительный элемент и нагревательный элемент, сконфигурированный для нагрева чувствительного элемента до предварительно заданной рабочей температуры, причем чувствительный элемент является восприимчивым к заданному газу таким образом, что, по меньшей мере, одно электрическое свойство чувствительного элемента изменяется в зависимости от присутствия заданного газа, причем электрическое свойство чувствительного элемента измеряется газоизмерительным устройством; и цепь управления, имеющую контроллер нагревательного элемента, связанный с нагревательным элементом и измеряющий его электрическое свойство, причем цепь управления имеет источник энергии подогрева, подающий энергию к нагревательному элементу, причем контроллер нагревательного элемента связан с источником энергии подогрева и регулирует его работу в зависимости от измерения электрического свойства нагревательного элемента; средство импульсной модуляции, соединенное с контроллером нагревательного элемента, источником энергии подогрева для управления величиной энергии, подаваемому к нагревательному элементу. При этом средство импульсной модуляции выполнено с возможностью формирования первого набора импульсов энергии, имеющего определенную продолжительность, и второго набора импульсов энергии, имеющего другую, более короткую продолжительность для поддержания температуры нагревательного элемента, по существу, на постоянном уровне. Также изобретение относится к способу изготовления и способу работы газоизмерительного устройства. Предлагаемое устройство изготавливается и эксплуатируется рентабельным и надежным образом. 3 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к области тепловых испытаний и может быть использовано для испытаний теплозащиты летательных аппаратов для определения ее теплофизических свойств и работоспособности

Наверх