Способ определения смазывающей способности масел



Способ определения смазывающей способности масел
Способ определения смазывающей способности масел
Способ определения смазывающей способности масел
Способ определения смазывающей способности масел

 


Владельцы патента RU 2484463:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (RU)

Изобретение относится к технологии оценки качества жидких смазочных материалов, в частности к определению их смазывающей способности. В способе, заключающемся в том, что пробу масла постоянной массы нагревают в выбранном температурном диапазоне при атмосферном давлении в течение постоянного времени, испытывают на машине трения, измеряют диаметр пятна износа, согласно изобретению, пробу термостатированного масла при каждой температуре испытывают на машине трения при трех нагрузках, измеряют диаметр пятна износа при каждой нагрузке, строят графические зависимости диаметров пятен износа от температуры термостатирования для каждой нагрузки, определяют температурные области с минимальным, максимальным и стабильным значениями диаметров пятна износа, а смазывающую способность масел определяют по зависимостям диаметра пятна износа от нагрузки при температурах окончания температурных областей. Достигается повышение информативности определения. 4 ил., 1 табл., 1 пр.

 

Изобретение относится к технологии оценки качества жидких смазочных материалов, в частности к определению их смазывающей способности.

Известен способ определения смазывающей способности масел, заключающийся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через нее электрический ток, снимают статическое напряжение на поверхностях пары трения изменением полярности электрического тока, измеряют постоянный ток при неподвижной паре трения и при установившемся режиме трения в присутствии смазки в контакте, при этом измеряют величину тока за период от начала испытания до стабилизации его значения при установившемся режиме трения в зависимости от времени трения, нагрузки, скорости скольжения, механических свойств материалов пары трения и температуры масла, строят их графические зависимости и оценивают смазывающую способность масла по параметрам: приспосабливаемости, скорости приспосабливаемости масла к данным условиям трения и коэффициенту совместимости масла (патент РФ №2186386 С1, дата приоритета 06.03.2001, дата публикации 27.07.2002, авторы Ковальский Б.И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату является способ определения смазывающей способности масел, заключающийся в том, что эксплуатируют пару трения в присутствии смазки, пропускают через пару трения электрический ток, причем берут пробу масла постоянной массы, нагревают в выбранном температурном диапазоне при атмосферном давлении в течение постоянного времени, фотометрируют, определяют коэффициент поглощения светового потока, строят графическую зависимость коэффициента поглощения светового потока от температуры нагревания и по точке перелома кривой зависимости, соответствующей окончанию работоспособности масла, определяют значение коэффициента поглощения светового потока, далее пробу испытывают на машине трения при постоянных режимах трения и пропускании постоянного тока через пару трения от внешнего стабилизированного источника питания заданной величины, устанавливаемой при неподвижной паре трения, измеряют диаметр пятна износа одного из элементов пары трения, строят графическую зависимость диаметра пятна износа от коэффициента поглощения светового потока и по значению коэффициента поглощения светового потока, полученному из графической зависимости коэффициента поглощения светового потока от температуры, определяют точку, соответствующую окончанию работоспособности масла, и на участке кривой от оси ординат до этой точки определяют смазывающую способность масла (патент РФ №2419791 С1, дата приоритета 09.03.2010, дата публикации 27.05.2011, авторы Ковальский Б.И. и др., RU, прототип).

Недостатком известных способов, включая прототип, является то, что они не обладают достаточной информативностью, так как не учитывают совместного влияния продуктов температурной деструкции и нагрузки на смазывающие свойства масел и не определяют температурную область его работоспособности, исключающую схватывание поверхностей трения.

Задачей изобретения является повышение информативности способа путем учета совместного влияния продуктов температурной деструкции и нагрузки на смазывающие свойства масел и определения температурных областей их работоспособности с высокими и низкими смазывающими свойствами масел различной базовой основы.

Для решения поставленной задачи в способе определения смазывающей способности масел, заключающемся в том, что пробу масла постоянной массы нагревают в выбранном температурном диапазоне при атмосферном давлении в течение постоянного времени, испытывают на машине трения, измеряют диаметр пятна износа, согласно изобретению, пробу термостатированного масла при каждой температуре испытывают на машине трения при трех нагрузках, измеряют диаметр пятна износа при каждой нагрузке, строят графические зависимости диаметров пятен износа от температуры термостатирования для каждой нагрузки, определяют температурные области с минимальным, максимальным и стабильным значениями диаметров пятна износа, а смазывающую способность масел определяют по зависимостям диаметра пятна износа от нагрузки при температурах окончания температурных областей.

На фигурах 1-3 представлены графические зависимости диаметров пятен износа от температуры термостатирования при различных нагрузках соответственно: минерального моторного масла М8-Г; частично синтетического моторного масла ТНК 5W-40 SL/CF и синтетического моторного масла Esso Ultron 5W-40 SL/CF и нагрузки: а - 13Н; б - 23Н; в - 33Н. На фиг.4 представлены графические зависимости диаметров пятен износа исследуемых масел в области I (кривые 1.1, 2.1, 3.1) и в области II (кривые 1.2, 2.2, 3.2) при максимальных значениях износа в данных областях от нагрузки испытания (13Н, 23Н, 33Н).

Пример конкретного выполнения способа. Испытанию подвергались: зимнее минеральное моторное масло М8-Г (фиг.1), универсальное всесезонное частично синтетическое моторное масло ТНК 5W-40 SL/CF (фиг.2) и синтетическое Esso Ultron 5W-40 SL/CF (фиг.3).

Пробу масла постоянной массы (80±0,1 г) нагревают в диапазоне температур Т от 140 до 300°С, повышая температуру в каждом последующем опыте на 10°С, и термостатируют в течение постоянного времени (8 час). Испытания начинают при температуре 140°С для моторных масел, 80°С для трансмиссионных, индустриальных и гидравлических масел и проводят при атмосферном давлении. После термостатирования пробу масла испытывают на трехшариковой машине трения со схемой трения "шар-цилиндр" последовательно при нагрузках 13, 23 и 33Н, и постоянных параметрах: скорости скольжения - 0,68 м/с, температуре испытания - 80°С и времени испытания - 2 ч. Затем измеряют диаметр пятна износа на каждом шаре и определяют среднеарифметическое значение при разных нагрузках. После этого температуру испытания масла повышают на 10°С и испытывают по вышеописанной технологии. После завершения испытания масла во всем температурном диапазоне от 140 до 300°С строят графические зависимости величины износа (диаметра) от температуры термостатирования, для каждой нагрузки, по которым определяют изменение смазывающих свойств масел различных базовых основ: минерального (фиг.1), частично синтетического (фиг.2), синтетического (фиг.3).

Установлены три характерных температурных области, для каждой нагрузки, различающиеся величиной износа и температурным диапазоном в зависимости от базовой основы масел и нагрузки. Результаты испытания сведены в таблицу и представлены на фиг.1-3.

Таблица
Марка масла Нагрузка, Н Смазывающие свойства
Температурная область Величина износа, мм Температурный диапазон, °С
М8-Г 13 I от 0,23 до 0,26 до 160
II от 0,23 до 0,75 от 160 до 220
III от 0,75 до 0,72 от 220 до 300
23 I от 0,29 до 0,3 до 160
II от 0,3 до 0,69 от 160 до 180
III от 0,69 до 0,83 от 180 до 300
33 I от 0,3 до 0,32 до 160
II от 0,32 до 0,81 от 160 до 200
III от 0,81 до 0,91 от 200 до 300
ТНК 5W-40 SL/CF 13 I от 0,26 до 0,29 до 160
II от 0,29 до 0,48 от 160 до 190
III от 0,48 до 0,5 от 190 до 290
23 I от 0,28 до 0,32 до 160
II от 0,32 до 0,6 от 160 до 200
III от 0,6 до 0,54 от 200 до 290
33 I 0,34 до 160
II от 0,34 до 0,72 от 160 до 200
III от 0,72 до 0,67 от 200 до 290
Esso Ultron 5W-40 SL/CF 13 I от 0,27 до 0,24 до 170
II от 0,24 до 0,59 от 170 до 240
III от 0,59 до 0,58 от 240 до 290
23 I от 0,29 до 0,31 до 160
II от 0,31 до 0,54 от 160 до 180
III от 0,54 до 0,66 от 180 до 290
33 I от 0,3 до 0,34 до 170
II от 0,34 до 0,66 от 170 до 200
III от 0,66 до 0,64 от 200 до 290

Например, для минерального масла М8-Г и нагрузки 13Н (фиг.1) первая температурная область (I), до изгиба зависимости U=f(T), износ практически не зависит от температуры термостатирования в диапазоне температур от 140 до 160°С и находится в пределах от 0,23 до 0,26 мм.

Во второй температурной области II для нагрузки 13Н в диапазоне температур от 160 до 220°С износ увеличивается до 0,75 мм, т.е. в этом температурном диапазоне минеральное масло снижает свои смазывающие свойства в результате образования продуктов температурной деструкции.

В третьей температурной области III при нагрузке 13Н в температурном диапазоне от 220 до 280°С износ стабилизируется на уровне 0,75 мм и только при температурах 290 и 300°С он уменьшается до значения 0,72 мм. Таким образом, в этом температурном диапазоне продукты температурной деструкции обеспечивают практически постоянство смазывающих свойств минерального масла (фиг.1а).

Увеличение нагрузки при трении скольжения до 23 и 33Н практически не влияют на температурный диапазон области 1, но увеличивает износ (фиг.4 кривые 1.1, 2.1, 3.1). Для второй температурной области нагрузка влияет на температурный диапазон, так для нагрузок он составляет: 13Н от 160 до 220°С; 23Н от 160 до 180°С и 33Н от 160 до 200°С, кроме того, нагрузка влияет на износ (фиг.4 кривые 1.2, 2.2, 3.2).

Аналогичная картина наблюдается при исследовании частично синтетического (фиг.2) и синтетического (фиг.3) масел. Данные по температурным областям по износу и температурным диапазонам приведены в таблице.

Согласно полученных результатов испытания моторных масел различной базовой основы (фиг.4), в температурной области I лучшими смазывающими свойствами с увеличением нагрузки характеризуются минеральное масло М8-Г (кривая 1.1) и синтетическое масло Esso ultron 5W-40 SL/CF (кривая 3.1) и незначительно им уступает частично синтетическое масло ТНК 5W-40 SL/CF.

Во второй температурной области с увеличением нагрузки лучшими смазывающими свойствами характеризуется синтетическое моторное масло Esso ultron 5W-40 SL/CF (кривая 3.2), а худшими минеральное моторное масло М8-Г (кривая 1.2).

Преимущество предлагаемого способа заключается в том, что он позволяет определить температурную область термостатированных масел с высокими смазывающими свойствами масел различной базовой основы, температурную область с низкими смазывающими свойствами и область стабилизации смазывающих свойств, оценить влияние нагрузки на температурный диапазон этих областей и продуктов температурной деструкции на износ, что в целом позволяет обоснованно отбирать более термостойкие масла и совершенствовать систему классификации по группам эксплуатационных свойств.

Способ определения смазывающей способности масел, заключающийся в том, что пробу масла постоянной массы нагревают в выбранном температурном диапазоне при атмосферном давлении в течение постоянного времени, испытывают на машине трения, измеряют диаметр пятна износа, отличающийся тем, что пробу термостатированного масла при каждой температуре испытывают на машине трения при трех нагрузках, измеряют диаметр пятна износа при каждой нагрузке, строят графические зависимости диаметров пятен износа от температуры термостатирования для каждой нагрузки, определяют температурные области с минимальным, максимальным и стабильным значениями диаметров пятна износа, а смазывающую способность масел определяют по зависимостям диаметра пятна износа от нагрузки при температурах окончания температурных областей.



 

Похожие патенты:

Изобретение относится к области исследования триботехнических свойств конструкционных и смазочных материалов, а именно к приспособлениям для проведения испытаний на трение и износ, позволяющим использовать в качестве привода токарные или сверлильные станки.

Изобретение относится к способам обработки данных спектрального анализа дизельного масла при технической диагностике трущихся деталей дизеля тепловоза. .

Изобретение относится к экспресс-методам контроля износа узлов трения, работающих в системе жидкой смазки. .

Изобретение относится к испытательной технике, к испытаниям на прочность. .

Изобретение относится к машиностроению, в частности к двигателестроению, и может быть использовано для приработки двигателей внутреннего сгорания (ДВС) при их изготовлении.

Изобретение относится к машиностроению и может быть использовано для точного измерения торцевого износа ротора в процессе работы. .

Изобретение относится к технике исследования триботехнических свойств канатной проволоки, проволочных покрытий и смазочных материалов. .

Изобретение относится к области испытательной техники, в частности к приборам для определения коэффициентов трения и их составляющих. .

Изобретение относится к технологии контроля качества смазочных масел при их производстве и идентификации. .

Изобретение относится к технологии испытания смазочных материалов. .

Изобретение относится к технологии контроля качества смазочных масел при их производстве и идентификации. .

Изобретение относится к способам определения влияния температурной деструкции на противоизносные свойства смазочных масел. .

Изобретение относится к технологии оценки качества жидких смазочных материалов. .

Изобретение относится к области испытания материалов, в частности, оно может быть использовано для оценки изнашивания материалов в условиях гидростатического давления и определения смазочных свойств рабочих жидкостей гидроприводов.

Изобретение относится к области машиностроения, в частности к испытаниям смазочно-охлаждающих технологических сред, используемых при резании металлов. .

Изобретение относится к технологии оценки качества жидких смазочных материалов. .

Изобретение относится к технологии испытания смазочных масел. .

Изобретение относится к технологии испытания смазочных масел. .

Изобретение относится к технологии испытания смазочных масел и может быть использовано для оценки их термоокислительной стабильности. .

Изобретение относится к области испытания противозадирных свойств масел и смазочных материалов, а именно к области определения критерия задиростойкости этих материалов, и может быть использовано в качестве оценки надежности и эффективности эксплуатации масел и смазочных материалов
Наверх