Статор газотурбинного двигателя и газотурбинный двигатель, содержащий такой статор



Статор газотурбинного двигателя и газотурбинный двигатель, содержащий такой статор
Статор газотурбинного двигателя и газотурбинный двигатель, содержащий такой статор
Статор газотурбинного двигателя и газотурбинный двигатель, содержащий такой статор
Статор газотурбинного двигателя и газотурбинный двигатель, содержащий такой статор

 


Владельцы патента RU 2486351:

СНЕКМА (FR)

Статор газотурбинного двигателя, образующий спрямляющий или направляющий аппарат, содержит множество лопаток, размещенных между концентрическими первым внутренним и вторым внешним кольцами. Второе кольцо имеет внешнюю поверхность, образующую внешнюю сторону статора, часть которой является цилиндрической. На цилиндрической части внешней поверхности второго кольца закреплен, по меньшей мере, один амортизирующий вибрации слоистый материал. Слоистый материал содержит, по меньшей мере, один слой из вязкоупругого материала, находящегося в контакте с частью поверхности второго кольца, и один противослой из жесткого материала. Слой из вязкоупругого материала и противослой из жесткого материала связаны между собой. Другое изобретение группы относится к газотурбинному двигателю, содержащему указанный выше статор. Изобретения позволяют обеспечить гашение вибраций статора газотурбинного двигателя. 2 н. и 11 з.п. ф-лы, 4 ил.

 

Настоящее изобретение относится к области газотурбинных двигателей, в частности двигателей с газовыми турбинами, таких как турбореактивные или турбовинтовые двигатели, и касается устройства для амортизации вибраций статорных деталей.

Авиационные газотурбинные двигатели содержат множество вращающихся лопаточных колес, то есть вращающихся дисков, по периферии которых установлены лопатки, подвижные в газовом потоке, взаимодействующие с неподвижно установленными лопаточными колесами, образующими спрямляющие аппараты лопатки или направляющие аппараты газового потока в зависимости от того, идет ли речь о компрессоре или турбине. Последние могут состоять из блоков в форме секторов кольца, содержащих каждый несколько лопаток, либо из единичных лопаток, например, с изменяемым углом установки. Эти компоненты являются особо чувствительными деталями, так как они должны отвечать, говоря об определении размеров, требованиям механической стойкости к температуре и к аэродинамической нагрузке, одновременно обеспечивая герметичность газового тракта. Комплекс этих аспектов таков, что эти конструкции являются статически нагруженными и с учетом требований к сроку службы амплитуды испытываемых ими вибраций должны оставаться незначительными.

При проектировании и доводке газотурбинного двигателя, требующих координации нескольких дисциплин, процесс определения размеров является итеративным. Определение размеров с учетом вибрации осуществляется для того, чтобы исключить наличие критических режимов в рабочем диапазоне. Комплекс утверждается в конце цикла проектирования путем испытания двигателя, на котором измеряются вибрационные амплитуды. Иногда появляются высокие уровни, вызванные либо ответом синхронных или асинхронных воздействий; либо нестабильностями. Проектирование спрямляющих или направляющих лопаток должно быть, в таком случае, сделано заново, что является особенно длительным и дорогостоящим процессом.

В промышленном плане целью является предсказание, возможно более раннее, при определении размеров уровней вибрационного ответа конструкций для того, чтобы принять корректирующие меры, которые должны быть внедрены в начале проектирования. Среди этих целей механическая амортизация является важной задачей для разработчиков.

Для обеспечения прочности этих деталей по отношению к вибрационной усталости решение заключается в том, что к конструкции добавляют специальные устройства, являющиеся источником гашения энергии. Из документа EP 1253290 известно, например, средство амортизации на лопатках подвижного колеса компрессора. Оно содержит слой вязкоупругого материала и напряженный слой. Что касается профиля лопаток, находящихся в тракте газового потока, решение, предложенное в этом документе, предусматривает образование полостей в профиле лопаток для размещения в них амортизирующих средств. Таким образом, поверхность профиля лопаток, находящихся в контакте с потоком, не имеет нерегулярности, и газовый поток не нарушается. Такая конструкция требует тщательной обработки из-за малой толщины лопаток. Более того, существует риск возникновения неравномерности между различными лопатками одного колеса, приводящий к дисбалансу.

Целью настоящего изобретения является уменьшение динамических реакций конструкции под синхронной или асинхронной нагрузкой аэродинамической или иной природы посредством введения динамической амортизации.

Статор газотурбинного двигателя, образующий спрямляющий аппарат или направляющий аппарат в соответствии с изобретением, содержащий множество лопаток, размещенных радиально между первым внутренним кольцом и вторым внешним кольцом, причем оба кольца являются концентрическими, при этом второе кольцо является частью внешней цилиндрической поверхности, отличающийся тем, что на упомянутой части внешней поверхности закреплен, по меньшей мере, один амортизирующий вибрации слоистый материал, при этом слоистый материал содержит, по меньшей мере, один слой вязкоупругого материала, который находится в контакте с упомянутой частью поверхности и с противослоем из жесткого материала.

Оригинальность настоящего изобретения заключается в использовании слоистых материалов, состоящих, по меньшей мере, из одного слоя вязкоупругого материала и, по меньшей мере, одного напряженного слоя, при этом упомянутые слоистые материалы приклеены на конструкции таким образом, чтобы гасить вибрационную энергию детали.

Гашение вибрационной энергии обеспечивается деформацией сдвига вязкоупругого материала между конструкцией, которая деформируется под динамической нагрузкой, и напряженным слоем, вовлеченным по инерции. Эти слоистые материалы приклеены или закреплены снаружи спрямляющих или направляющих аппаратов секторами на внешнем кольце и непосредственно гасят моды вибраций рассматриваемых деталей.

Изобретение позволяет увеличить структурную амортизацию металлической детали и решить вибрационную проблему, встречаемую при проектировании: следствием этого является, в конечном итоге, уменьшение времени разработки и связанных с ней доводок, а следовательно, уменьшение затрат.

Оно позволяет также расширить области классического проектирования, ограниченные удовлетворением требований по стойкости к переменным нагрузкам и, как следствие, получить выигрыш в массе.

Изобретение применимо независимо от типа динамической нагрузки: пересечение с гармониками двигателей, асинхронное или акустическое возбуждение, аэроупругая нестабильность или возбуждение в контакте ротор-статор.

В соответствии с различными вариантами осуществления:

- Слоистый материал покрывает частично, аксиально или по окружности упомянутую часть внешней поверхности.

- Спрямляющий аппарат, соответственно направляющий аппарат, содержит множество слоистых материалов, распределенных по окружности на части внешней поверхности.

- Слои связаны между собой.

- Слои связаны между собой склеиванием.

- Противослой содержит деталь механического крепления.

- Деталь механического крепления соединяет противослой со спрямляющим аппаратом или направляющим аппаратом.

- Деталь механического крепления удерживает вязкоупругий слой сжатым к упомянутой части внешней поверхности.

- Слоистый материал состоит из пакета чередующихся вязкоупругих и жестких слоев.

- Характеристики вязкоупругого материала изменяются от одного слоя к другому.

- Характеристики вязкоупругого материала являются одинаковыми от одного слоя к другому.

- Характеристики жесткого материала изменяются от одного жесткого слоя к другому.

- Характеристики жесткого материала одинаковы от одного жесткого слоя к другому.

Изобретение касается также газотурбинного двигателя, содержащего, по меньшей мере, один такой спрямляющий аппарат или направляющий аппарат. Речь может идти о направляющем аппарате ступени турбины или спрямляющем аппарате ступени компрессии.

В дальнейшем изобретение поясняется нижеследующим описанием, не являющимся ограничительным, со ссылкой на сопровождающие чертежи, на которых:

Фиг. 1 схематично изображает турбореактивный двигатель в аксиальном разрезе, содержащий статор по изобретению;

Фиг. 2 изображает в разрезе амортизирующий слоистый материал по изобретению;

Фиг. 3 изображает сектор статора, вид в перспективе, снабженный амортизирующим слоистым материалом в соответствии с изобретением;

Фиг. 4 изображает другой вариант осуществления изобретения.

На фиг. 1 схематично изображен пример газотурбинного двигателя в виде турбореактивного двигателя 1 с истечением первичного и вторичного воздуха и с двумя корпусами. Вентилятор 2 на входе питает двигатель воздухом. Сжатый вентилятором воздух разделяется на два концентрических потока. Вторичный поток выводится непосредственно в атмосферу и обеспечивает основную часть движущей реактивной тяги. Первичный поток направляется через многоступенчатый компрессор к камере сгорания, где он смешивается с топливом и сжигается. Горячие газы питают различные ступени турбины, приводящие во вращение вентилятор и ступени компрессии. Затем газы выбрасываются в атмосферу.

Такой двигатель содержит несколько колес спрямляющего аппарата: одно колесо на выходе из вентилятора для выпрямления вторичного потока перед его выталкиванием, колеса между подвижными колесами компрессоров и направляющие лопатки между колесами турбин как высокого давления, так и низкого давления.

В соответствии с изобретением амортизирующие вибрации слоистые материалы размещают на внешних поверхностных частях, по меньшей мере, одной части внешних колец спрямляющих или направляющих аппаратов.

Как видно на фиг. 2, слоистый материал 30 выполнен в виде множества слоев, уложенных одни на другие. В соответствии с вариантом осуществления слоистый материал содержит слой 32 вязкоупругого материала и противослой 34 из жесткого материала. Слоистый материал накладывается вязкоупругим слоем 32 на поверхность 31 амортизируемой конструкции.

Вязкоупругость является свойством твердого тела или жидкости, которые при деформации проявляют одновременно вязкость и упругость одновременным гашением и накоплением механической энергии.

Изотропные или анизотропные характеристики упругости твердого материала противослоя 34 превышают изотропные или анизотропные характеристики вязкоупругого материала в желаемом диапазоне частотного и термического функционирования. В качестве неограничивающего примера материалом слоя 34 может служить металл или композит, а в качестве материала слоя 32 - каучук, силикон, полимер, стекло или эпоксидная смола. Материал должен быть эффективен в смысле гашения энергии в желаемой конфигурации, соответствующей определенным диапазонам частот и температур. Он выбирается исходя из его характерных модулей сдвига, выраженных в деформации и скорости.

В соответствии с другими вариантами осуществления слоистый материал содержит несколько слоев 32 вязкоупругого материала и несколько слоев 34 из жесткого материала, которые размещены попеременно. Пример на фиг. 2 показывает, не ограничивающим образом, слоистый амортизирующий материал, содержащий три слоя 32 из вязкоупругого материала и три противослоя 34 из жесткого материала. В соответствии с вариантом применения слои 32 вязкоупругого материала и слои 34 жесткого материала имеют одинаковые размеры или разные размеры. Когда слоистый материал содержит несколько слоев 32, они все могут иметь одинаковые механические характеристики либо иметь различные механические характеристики. Когда слоистый материал содержит несколько противослоев 34, они все могут иметь одинаковые механические характеристики либо различные механические характеристики. Слои 32 и противослои 34 скреплены одни с другими предпочтительно посредством адгезии с помощью клеящей пленки либо полимеризацией.

На фиг. 3 представлен первый вариант осуществления. Сектор 40 статора, который здесь является сектором направляющего аппарата турбины, содержит радиально внутренний кольцевой элемент 41, удерживающий уплотняющий элемент 42 с одной стороны и формирующий внутреннюю стенку газового тракта с другой стороны. Множество лопаток 43 проходят радиально от кольцевого элемента 41 до радиально внешнего кольцевого элемента 44. Элемент 44 образует с одной стороны внешнюю стенку тракта газов, воздействующих на лопатки 43. Кольцевой элемент 44 содержит передние и задние по потоку детали крепления 45 и 46. Внешняя поверхность 44е элемента 44 имеет практически цилиндрическую форму. Слоистый материал 30, образованный двумя слоями: вязкоупругим 32 и жестким противослоем 34, закреплен на этой части поверхности 44е. Слоистый материал 30 закреплен приклеиванием или полимеризацией вязкоупругого слоя на части поверхности 44е. Этот вязкоупругий материал проходит на аксиальной части поверхности 44е, предпочтительно он проходит по всей дуге сектора. Когда секторы 40 установлены в картере турбины, они образуют полное колесо направляющего аппарата со слоистым амортизирующим материалом по всей окружности внешней поверхности направляющего аппарата.

При работе, моды вибраций секторов спрямляющего аппарата или направляющего аппарата, а также моды вибраций лопаток демпфируются слоистыми материалами без нарушения аэродинамического потока в газовом тракте.

На фиг. 4 представлен второй вариант осуществления. Сектор спрямляющего аппарата или направляющего аппарата, изображенный в аксиальном разрезе на части радиально внешнего элемента 44 является тем же, что был ранее описан с внутренним кольцевым элементом 41 и внешним кольцевым элементом 44. Вязкоупругий амортизирующий элемент 30' содержит здесь также вязкоупругий слой 32' и жесткий противослой 34'. Разница состоит в способе соединения с сектором спрямляющего аппарата соответственно направляющего аппарата. Жесткий противослой 34' содержит боковое продолжение 34'а, которое опирается на более массивную и толстую часть внешнего кольцевого элемента 44. Таким образом, в этом примере речь идет о передней по потоку детали крепления 45. Боковое продолжение 34'а скреплено болтами или иным средством с деталью крепления 45. С помощью этого средства гарантируют лучшую стойкость амортизирующего слоистого материала в процессе различных явлений, которые статор должен выдерживать. В этом случае слоистый материал необязательно должен быть приклеен к внешней поверхности части кольца 44. Механическое крепление обеспечивает прижатие слоистого материала к этой поверхности таким образом, что, когда возникают вибрации, то они передаются на вязкоупругий слой. Как и в предыдущем случае, наложение слоистого амортизирующего вязкоупругого материала на внешнее кольцо статора может быть адаптировано в зависимости от обстоятельств.

1. Статор газотурбинного двигателя, образующий спрямляющий аппарат или направляющий аппарат, содержащий множество лопаток (43), размещенных радиально между первым, внутренним, кольцом (42) и вторым, внешним, кольцом (44), при этом оба кольца являются концентрическими, а второе кольцо имеет внешнюю поверхность, образующую внешнюю сторону статора, часть которой является цилиндрической (44е), отличающийся тем, что на упомянутой части внешней поверхности (44е) закреплен, по меньшей мере, один амортизирующий вибрации слоистый материал (30, 30'), содержащий, но меньшей мере, один слой (32) из вязкоупругого материала, находящегося в контакте с упомянутой частью поверхности (44е), и один противослой из жесткого материала (34), упомянутые слои (32, 34) связаны между собой.

2. Статор по предыдущему пункту, в котором слоистый материал частично покрывает упомянутую часть внешней поверхности (44е).

3. Статор по п.1, содержащий множество слоистых материалов, распределенных по окружности на части внешней поверхности.

4. Статор по п.1, в котором слои (32, 34) связаны между собой склеиванием.

5. Статор по п.1, в котором противослой (34') содержит деталь механического крепления (34'a).

6. Статор по предыдущему пункту, в котором деталь механического крепления (34'a) соединяет противослой со статором.

7. Статор по предыдущему пункту, в котором деталь механического крепления (34'a) удерживает вязкоупругий слой прижатым к упомянутой части внешней поверхности.

8. Статор по п.1, в котором слоистый материал состоит из пакета чередующихся вязкоупругих слоев и жестких слоев (32, 34).

9. Статор по предыдущему пункту, в котором характеристики вязкоупругого материала изменяются от одного слоя к другому.

10. Статор по п.8, в котором характеристики вязкоупругого материала одинаковы от одного слоя к другому.

11. Статор по п.8, в котором характеристики жесткого материала изменяются от одного жесткого слоя к другому.

12. Статор по п.8, в котором характеристики жесткого материала одинаковы от одного жесткого слоя к другому.

13. Газотурбинный двигатель, содержащий, по меньшей мере, один статор по одному из предыдущих пунктов.



 

Похожие патенты:

Изобретение относится к способу демпфирования вибраций в компонентах турбомашин и устройству для осуществления этого способа. .

Изобретение относится к энергомашиностроению и представляет собой устройство для диагностики автоколебаний рабочего колеса турбомашины, содержащее по крайней мере один датчик пульсаций, помещенный в корпусе в зоне периферии лопаток рабочего колеса и подключенный через фильтр и усилитель ко входу схем совпадения, а выход последней через усилитель подключен к системе индикации, причем датчик через согласующий усилитель подключен к входам схемы совпадений одной промежуточной и двумя крайними параллельными цепями, каждая из которых имеет последовательно включенные перестраиваемый активный полосовой фильтр, амплитудный дискриминатор, интегратор и электронный ключ, а к фильтрам крайних и промежуточных цепей дополнительно подключен через усилитель датчик частоты вращения рабочего колеса.

При демпфировании колебаний в лопатке турбинной машины колебательную энергию лопатки сначала преобразуют в электрическую энергию за счет пьезоэлектрического эффекта, а затем электрическую энергию преобразуют в тепло потерь. Внутри подлежащей демпфированию лопатки создают полое пространство для установки пьезоэлектрического демпфирующего элемента. Устанавливают в полое пространство лопатки пьезоэлектрический демпфирующий элемент, выполненный с возможностью деформации за счет колебаний лопатки и создания электрического напряжения. Жестко соединяют демпфирующий элемент с лопаткой за счет замыкания по материалу или механического зажимания. С помощью созданного электрического напряжения создают в подключенной электрической цепи омическое тепло потерь. Другое изобретение группы относится к лопатке турбинной машины, в которой для осуществления указанного выше способа внутри лопатки образовано полое пространство и, по меньшей мере, один пьезоэлектрический демпфирующий элемент расположен в указанном полом пространстве. Группа изобретений позволяет упростить демпфирование колебаний лопатки турбинной машины. 2 н. и 12 з.п. ф-лы, 8 ил.

Лопаточный кольцевой сектор статора турбомашины летательного аппарата содержит сектор внутренней обечайки, множество лопаток и сборку, образующую сектор наружной обечайки. Лопатки закреплены на сборке, образующей сектор наружной обечайки, и на секторе внутренней обечайки. Сборка, образующая сектор наружной обечайки, содержит множество элементарных секторов на расстоянии друг от друга вдоль тангенциального направления сборки, и демпфирующие вибрацию клинья. Каждый демпфирующий вибрацию клин вставлен между двумя элементарными секторами, размещенными непосредственно последовательно вдоль упомянутого тангенциального направления. Профиль каждого демпфирующего вибрацию клина является приблизительно таким же, как профиль элементарных секторов. Демпфирующие вибрацию клинья проходят вдоль наклонного направления упомянутой сборки. Другое изобретение группы относится к турбомашине, содержащей указанный выше лопаточный кольцевой сектор. Группа изобретений позволяет повысить демпфирование вибраций статора турбомашины. 2 н. и 3 з.п. ф-лы, 8 ил.

При доводке рабочего колеса газотурбинного двигателя проводят экспериментальные испытания и определяют необходимость доводки вследствие обнаружения возбуждающих колебаний, приводящих к разрушению замкового соединения на рабочих лопатках. После определения необходимости доводки газотурбинного двигателя определяют наиболее эффективный вариант подрезки сопловых лопаток, заключающийся в наименьшем падении КПД газотурбинного двигателя. Первый вариант подрезки заключается в косой подрезке выходной кромки сопловой лопатки с увеличением угла подрезки от концевой части пера с максимальной глубиной подрезки у корневой части пера, не превышающей 10% от хорды профиля пера сопловой лопатки. Второй вариант подрезки заключается в косой подрезке выходной кромки сопловой лопатки с увеличением угла подрезки от корневой части пера с максимальной глубиной подрезки у концевой части пера, не превышающей 10% от хорды профиля пера сопловой лопатки. Лопаток с вариантом подрезки с наименьшим падением КПД закладывают в рабочее колесо от 60% до 70%, с наибольшим падением КПД - от 30% до 40%. Выполняют подрезку в соответствии с полученными расчетами и сформированный комплект сопловых лопаток расставляют в сопловом аппарате в зависимости от расположения жаровых труб, делящих сопловой аппарат на сектора, в каждый из которых закладывают разную комбинацию лопаток. Комбинацию лопаток составляют по меньшей мере из четырех лопаток одного варианта подрезки или обоих. Затем проводят опытную эксплуатацию, при положительном результате которой газотурбинный двигатель переходит на стадию производства, при отрицательном результате опытной эксплуатации принимают иные варианты расстановки сопловых лопаток в сопловом аппарате. Изобретение позволяет снизить возбуждающие колебания, воздействующие на рабочие лопатки газотурбинного двигателя, при несущественном изменении его конструкции. 5 ил., 2 табл.

Изобретение относится к энергетике. Система впрыска топлива для турбореактивного двигателя, включающая в себя неподвижную часть и скользящую траверсу, дополнительно содержащую центрирующий конус, предназначенный для центрирования инжектора топлива относительно системы впрыска, причем неподвижная часть и скользящая траверса проходят по оси отсчета, причем неподвижная часть содержит полость, ограниченную в осевом направлении дном и закрывающим желобом, при этом скользящая траверса имеет реборду, содержащуюся в полости. Система впрыска топлива дополнительно включает в себя упругие средства, расположенные в полости так, чтобы оказывать усилие на реборду, способные препятствовать вибрирующим микроперемещениям скользящей траверсы относительно неподвижной части в отсутствии термического расширения. Также представлены камера сгорания, а также двигатель летательного аппарата, содержащие систему впрыска топлива согласно изобретению, а также способ сборки системы впрыска топлива. Изобретение позволяет повысить сопротивление износу инжектора. 4 н. и 6 з.п. ф-лы, 9 ил., 1 табл.

Газовая турбина содержит систему балансировки вращающейся части, включающую балансировочный весовой элемент и крепежный элемент. Балансировочный весовой элемент выполнен с первым и вторым отверстиями, при этом первое и второе отверстия выполнены с возможностью съемной установки крепежного элемента. Крепежный элемент обеспечивает соединение балансировочного весового элемента с вращающейся частью при его установке в первое отверстие. Крепежный элемент размещают во втором отверстии после крепления балансировочного весового элемента без возможности снятия на вращающейся части. При балансировке вращающейся части газовой турбины соединяют с возможностью снятия балансировочный весовой элемент с вращающейся частью в пространственно зафиксированном положении посредством введения крепежного элемента в первое отверстие вращающейся части. Проверяют, сбалансирована ли вращающаяся часть, и если вращающаяся часть сбалансирована, то прикрепляют балансировочный весовой элемент без возможности снятия в пространственно зафиксированном положении к вращающейся части. Вводят крепежный элемент во второе отверстие балансировочного весового элемента, когда балансировочный весовой элемент прикрепляют без возможности снятия в пространственно зафиксированном положении. Группа изобретений позволяет упростить балансировку вращающейся части газовой турбины. 2 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к демпферам для гашения вибраций рабочих лопаток и дисков авиационных газотурбинных двигателей, а именно устройствам демпфирования колебаний рабочих колес типа блиск (моноколес). Устройство демпфирования колебаний рабочих колес газотурбинного двигателя включает демпфирующий элемент, выполненный в виде упругой ленты, плотно свитой в спираль в несколько слоев, скрепленной радиальными штифтами и установленной с натягом на цилиндрической или конической поверхности обода блиска. Упругая лента может имеет переменную по длине ширину и/или толщину. Поперечное сечение упругой ленты имеет желобчатую форму. Упругая лента изготовлена из материала с высоким внутренним трением. Материал с высоким внутренним трением представляет собой композиционный материал. Изобретение повышает прочность и надежность рабочих колес блискового типа газотурбинного двигателя. 4 з.п. ф-лы, 5 ил.
Наверх